Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36979099

RESUMO

Therapies that target the multicellular pathology of central nervous system (CNS) disease/injury are urgently required. Modified non-anticoagulant heparins mimic the heparan sulphate (HS) glycan family and have been proposed as therapeutics for CNS repair since they are effective regulators of numerous cellular processes. Our in vitro studies have demonstrated that low-sulphated modified heparan sulphate mimetics (LS-mHeps) drive CNS repair. However, LS-mHeps are derived from pharmaceutical heparin purified from pig intestines, in a supply chain at risk of shortages and contamination. Alternatively, cellular synthesis of heparin and HS can be achieved using mammalian cell multiplex genome engineering, providing an alternative source of recombinant HS mimetics (rHS). TEGA Therapeutics (San Diego) have manufactured rHS reagents with varying degrees of sulphation and we have validated their ability to promote repair in vitro using models that mimic CNS injury, making comparisons to LS-mHep7, a previous lead compound. We have shown that like LS-mHep7, low-sulphated rHS compounds promote remyelination and reduce features of astrocytosis, and in contrast, highly sulphated rHS drive neurite outgrowth. Cellular production of heparin mimetics may, therefore, offer potential clinical benefits for CNS repair.

2.
Metab Eng ; 70: 155-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038554

RESUMO

Heparin is an essential anticoagulant used for treating and preventing thrombosis. However, the complexity of heparin has hindered the development of a recombinant source, making its supply dependent on a vulnerable animal population. In nature, heparin is produced exclusively in mast cells, which are not suitable for commercial production, but mastocytoma cells are readily grown in culture and make heparan sulfate, a closely related glycosaminoglycan that lacks anticoagulant activity. Using gene expression profiling of mast cells as a guide, a multiplex genome engineering strategy was devised to produce heparan sulfate with high anticoagulant potency and to eliminate contaminating chondroitin sulfate from mastocytoma cells. The heparan sulfate purified from engineered cells grown in chemically defined medium has anticoagulant potency that exceeds porcine-derived heparin and confers anticoagulant activity to the blood of healthy mice. This work demonstrates the feasibility of producing recombinant heparin from mammalian cell culture as an alternative to animal sources.


Assuntos
Edição de Genes , Heparina , Animais , Anticoagulantes , Heparitina Sulfato/metabolismo , Camundongos , Suínos
3.
Trends Biotechnol ; 24(1): 9-14, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16309767

RESUMO

The impact of changes incurred by agricultural biotechnology has led to concern regarding soil ecosystems and, rightly or wrongly, this has focused on the introduction of genetically modified (GM) crops. Soils are key resources, with essential roles in supporting ecosystems and maintaining environmental quality and productivity. The complexity of soils presents difficulties to their inclusion in the risk assessment process conducted for all GM plants. However, a combined approach, informed by both soil ecology and soil quality perspectives, that considers the impacts of GM crops in the context of conventional agricultural practices can provide a regulatory framework to ensure the protection of soils without being overly restrictive.


Assuntos
Produtos Agrícolas/genética , Ecossistema , Plantas Geneticamente Modificadas/fisiologia , Solo , Biodiversidade , Poluição Ambiental , Modelos Biológicos , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA