Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463972

RESUMO

The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases 2-fold at 7 days post-influenza infection (dpi) and 3-fold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.

2.
Langmuir ; 36(29): 8389-8397, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32628488

RESUMO

The self-assembly of amyloidogenic peptides on membrane surfaces is associated with the death of neurons and ß-cells in Alzheimer's disease and type 2 diabetes, respectively. The early events of self-assembly in vivo are not known, but there is increasing evidence for the importance of the α-helix. To test the hypothesis that electrostatic interactions involving the helix dipole play a key role in membrane-mediated peptide self-assembly, we studied IAPP[11-25(S20G)-NH2] (R11LANFLVHSGNNFGA25-NH2), which under certain conditions self-assembles in hydro to form ß-sheet assemblies through an α-helix-containing intermediate. In the presence of small unilamellar vesicles composed solely of zwitterionic lipids, the peptide does not self-assemble presumably because of the absence of stabilizing electrostatic interactions between the membrane surface and the helix dipole. In the presence of vesicles composed solely of anionic lipids, the peptide forms a long-lived α-helix presumably stabilized by dipole-dipole interactions between adjacent helix dipoles. This helix represents a kinetic trap that inhibits ß-sheet formation. Intriguingly, when the amount of anionic lipids was decreased to mimic the ratio of zwitterionic and anionic lipids in cells, the α-helix was short-lived and underwent an α-helix to ß-sheet conformational transition. Our work suggests that the helix dipole and membrane electrostatics delineate the conformational transitions occurring along the self-assembly pathway to the amyloid.


Assuntos
Diabetes Mellitus Tipo 2 , Amiloide , Humanos , Peptídeos , Conformação Proteica em alfa-Hélice , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA