Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Int J Clin Oncol ; 28(3): 363-369, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689013

RESUMO

BACKGROUND: Cancer patients are more vulnerable to COVID-19 and are thus given high priority in vaccination campaigns. In solid cancer patients treated with checkpoint inhibitors, we evaluated the amount of anti-RBD and neutralizing antibodies and antibody avidity after two or three doses of the vaccine. METHODS: Thirty-eight solid cancer patients, 15 untreated hematological patients and 21 healthy subjects were enrolled in the study. Blood was collected before the first dose (T0), 21 days after the second (T2) and in 18 solid cancer patients also 15 days after the third dose of vaccine (T3). IgG, IgM and IgA anti-RBD antibodies were detected by ELISA. Neutralizing antibodies were measured testing the inhibition of RBD binding to ACE2. Antibody avidity was evaluated in 18 patients by a urea avidity ELISA. RESULTS: IgG anti-RBD antibodies were produced in 65.8% of the cancer patients at T2, and in 60% of hematological patients at levels lower than healthy controls. IgM and IgA anti-RBD antibodies were also produced in 5.3% and 21% cancer patients, respectively. At T3, a significant increase in anti-RBD IgG levels was observed. Neutralizing antibodies were produced in 68.4% of cancer patients as compared with 93% of untreated hematological patients and 100% of controls, at titers lower than in healthy subjects. At T3, neutralizing antibodies and avidity of IgG anti-RBD increased; 6/18 patients negative at T2 developed neutralizing antibodies at T3. CONCLUSION: The data indicate that in cancer patients mRNA vaccine induces high avidity anti-RBD antibodies and neutralizing antibodies that increase after the third dose. The process of induction and selection of high-affinity antibodies is apparently unaffected by the treatment with anti-PD-1 or anti-PD-L1 antibodies.


Assuntos
COVID-19 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais , Neoplasias/tratamento farmacológico
3.
Clin Exp Med ; 23(4): 1197-1203, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36074205

RESUMO

Vaccination represents the best strategy to fight COVID-19 pandemics, especially in immune compromised subjects. In chronic lymphatic leukemia patients, a marked impairment of the immune response to mRNA SARS-CoV-2 vaccine was observed. In this report, we analyzed anti-RBD and neutralizing antibodies in CLL patients after two doses of mRNA SARS CoV 2 vaccine and evaluated the impact of Bruton kinase inhibitory agents. Twenty-seven CLL patients vaccinated with mRNA vaccines against SARS CoV-2 were recruited. Serum IgG, IgM and IgA anti-RBD antibodies and neutralizing antibodies were detected, and antibody avidity was measured. Peripheral blood leukocytes subsets were evaluated by flow cytometry. After two vaccine doses anti-RBD IgG were produced in 11/27 (40.5%) of patients and levels of IgG and IgA anti RBD in CLL patients were sensibly lower than in controls. Neutralizing antibodies were detectable in 12/27 (44.5%) of the patients and their level was lower than that observed in controls. Disease burden and treatment with Bruton kinases inhibitors markedly impaired vaccine induced antibody response. However, in responder patients, antibody avidity was comparable to normal subjects, indicating that the process of clonal selection and affinity maturation takes place as expected. Taken together, these data confirm the impact of disease burden and therapy on production of anti-RBD and neutralizing antibodies and support the current policy of vaccinating CLL patients.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Imunoglobulina A , Imunoglobulina G
5.
RMD Open ; 7(3)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880126

RESUMO

OBJECTIVES: In patients with systemic autoimmune rheumatic disorders (SARDs), vaccination with SARS-CoV-2 mRNA vaccines has been proposed. The aim of this study is to evaluate the immune response elicited by vaccination with mRNA vaccine, testing IgM, IgA and IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD) and measuring neutralising antibodies. METHODS: IgG, IgM and IgA anti-RBD antibodies were measured in 101 patients with SARDs. Antibodies inhibiting the interaction between RBD and ACE2 were evaluated. Antibody avidity was tested in a chaotropic ELISA using urea. Twenty-one healthcare workers vaccinated with mRNA vaccine served as control group. RESULTS: Anti-RBD IgG and IgA were produced after the first dose (69% and 64% of the patients) and after the boost (93% and 83%). Antibodies inhibiting the interaction of RBD with ACE2 were detectable in 40% of the patients after the first dose and 87% after boost, compared with 100% in healthy controls (p<0.01). Abatacept and mycophenolate had an impact on the titre of IgG anti-RBD antibodies (p<0.05 and p<0.005, respectively) and on the amount of neutralising antibodies. No effect of other therapies was observed. Vaccinated patients produce high avidity antibodies, as healthy controls. CONCLUSIONS: These data show that double-dose vaccination induced in patients with SARDs anti-RBD IgG and IgA antibodies in amounts not significantly different from controls, and, most interestingly, characterised by high avidity and endowed with neutralising activity.


Assuntos
Doenças Autoimunes , COVID-19 , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
6.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207300

RESUMO

The BNT162b2 vaccine, containing lipid nanoparticles-formulated mRNA encoding the full-length spike protein of SARS-CoV-2, has been employed to immunize health care workers in Italy, administered in two doses 21 days apart. In this study, we characterized the antibody response induced by the BNT162b2 vaccine in a group of health care workers, tested at baseline, after the first dose and after the booster. Thirty-nine subjects without previous exposure to SARS-CoV-2 were vaccinated with the BNT162b2 vaccine. IgM, IgG, and IgA anti-receptor binding domain (RBD) were tested by ELISA. Neutralizing antibodies were evaluated testing the inhibition of RBD binding to ACE2. Antibody avidity was measured by urea avidity ELISA. IgM anti-RBD are produced after the first dose of vaccine and persist after the booster. IgG and IgA anti-RBD antibodies are detected in high amounts in all the subjects after the first dose and further increase after the booster. A few subjects, already after the first dose, produce antibodies inhibiting RBD interaction with ACE2. After the booster, high levels of inhibitory antibodies are detected in all the subjects. Affinity maturation takes place with boosting and IgG anti-RBD avidity increases with the number of immunizations. A less pronounced increase is observed with IgA. These data indicate that the BNT162b2 vaccine can induce high levels of protective antibodies of high avidity in vaccinated subjects; both IgG and IgA anti-RBD antibodies are produced. Further studies are needed to evaluate antibody persistence over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA