Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 186: 107867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348770

RESUMO

A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (less than 38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Transcriptoma , Genoma , Núcleo Celular
2.
Ecol Evol ; 10(21): 11966-11982, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209263

RESUMO

Phylogenetic inference and species delimitation can be challenging in taxonomic groups that have recently radiated and where introgression produces conflicting gene trees, especially when species delimitation has traditionally relied on mitochondrial data and color pattern. Chromodoris, a genus of colorful and toxic nudibranch in the Indo-Pacific, has been shown to have extraordinary cryptic diversity and mimicry, and has recently radiated, ultimately complicating species delimitation. In these cases, additional genome-wide data can help improve phylogenetic resolution and provide important insights about evolutionary history. Here, we employ a transcriptome-based exon capture approach to resolve Chromodoris phylogeny with data from 2,925 exons and 1,630 genes, derived from 15 nudibranch transcriptomes. We show that some previously identified mimics instead show mitonuclear discordance, likely deriving from introgression or mitochondrial capture, but we confirm one "pure" mimic in Western Australia. Sister-species relationships and species-level entities were recovered with high support in both concatenated maximum likelihood (ML) and summary coalescent phylogenies, but the ML topologies were highly variable while the coalescent topologies were consistent across datasets. Our work also demonstrates the broad phylogenetic utility of 149 genes that were previously identified from eupulmonate gastropods. This study is one of the first to (a) demonstrate the efficacy of exon capture for recovering relationships among recently radiated invertebrate taxa, (b) employ genome-wide nuclear markers to test mimicry hypotheses in nudibranchs and (c) provide evidence for introgression and mitochondrial capture in nudibranchs.

3.
Mar Genomics ; 50: 100703, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31466869

RESUMO

The genus Alveopora is a scleractinian coral taxon whose phylogenetic classification has recently changed from the family Poritidae to Acroporidae. This change, which was made based on single-locus genetic data, has led to uncertainty about the placement of Alveopora and the ability for deep evolutionary relationships in these groups to be accurately recovered and represented by limited genetic datasets. We sought to characterize the higher-level position of Alveopora using newly available transcriptome data to confirm its placement within Acroporidae and resolve its closest ancestor. Here we present an analysis of a new 2031 gene dataset that confirms the placement of Alveopora within Acroporidae corroborating other single-locus (COI, 16S and ITS) analyses and a mitogenome dataset. We also resolve the position of Alveopora as sister to the genus Montipora. This has allowed the re-interpretation of morphology, and a rediagnosis of the family Acroporidae and the genus Alveopora.


Assuntos
Antozoários/classificação , Filogenia , Transcriptoma , Animais , Antozoários/anatomia & histologia , Antozoários/genética
4.
Ecol Evol ; 8(21): 10621-10633, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464833

RESUMO

AIM: The Antarctic Circumpolar Current (ACC) connects benthic populations by transporting larvae around the continent, but also isolates faunas north and south of the Antarctic Convergence. We test circumpolar panmixia and dispersal across the Antarctic Convergence barrier in the benthic sea star Glabraster antarctica. LOCATION: The Southern Ocean and south Atlantic Ocean, with comprehensive sampling including the Magellanic region, Scotia Arc, Antarctic Peninsula, Ross Sea, and East Antarctica. METHODS: The cytochrome c oxidase subunit I (COI) gene (n = 285) and the internal transcribed spacer region 2 (ITS2; n = 33) were sequenced. We calculated haplotype networks for each genetic marker and estimated population connectivity and the geographic distribution of genetic structure using ΦST for COI data. RESULTS: Glabraster antarctica is a single circum-Antarctic species with instances of gene flow between distant locations. Despite the homogenizing potential of the ACC, population structure is high (ΦST = 0.5236), and some subpopulations are genetically isolated. Genetic breaks in the Magellanic region do not align with the Antarctic Convergence, in contrast with prior studies. Connectivity patterns in East Antarctic sites are not uniform, with some regional isolation and some surprising affinities to the distant Magellanic and Scotia Arc regions. MAIN CONCLUSIONS: Despite gene flow over extraordinary distances, there is strong phylogeographic structuring and genetic barriers evident between geographically proximate regions (e.g., Shag Rocks and South Georgia). Circumpolar panmixia is rejected, although some subpopulations show a circumpolar distribution. Stepping-stone dispersal occurs within the Scotia Arc but does not appear to facilitate connectivity across the Antarctic Convergence. The patterns of genetic connectivity in Antarctica are complex and should be considered in protected area planning for Antarctica.

5.
Mol Phylogenet Evol ; 111: 110-131, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263876

RESUMO

Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown clades.


Assuntos
Extinção Biológica , Filogenia , Pepinos-do-Mar/classificação , Animais , Teorema de Bayes , Fósseis , Funções Verossimilhança , Pepinos-do-Mar/genética , Análise de Sequência de DNA , Fatores de Tempo
6.
Nature ; 530(7588): 94-7, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842060

RESUMO

The discovery of four new Xenoturbella species from deep waters of the eastern Pacific Ocean is reported here. The genus and two nominal species were described from the west coast of Sweden, but their taxonomic placement remains unstable. Limited evidence placed Xenoturbella with molluscs, but the tissues can be contaminated with prey. They were then considered deuterostomes. Further taxon sampling and analysis have grouped Xenoturbella with acoelomorphs (=Xenacoelomorpha) as sister to all other Bilateria (=Nephrozoa), or placed Xenacoelomorpha inside Deuterostomia with Ambulacraria (Hemichordata + Echinodermata). Here we describe four new species of Xenoturbella and reassess those hypotheses. A large species (>20 cm long) was found at cold-water hydrocarbon seeps at 2,890 m depth in Monterey Canyon and at 1,722 m in the Gulf of California (Mexico). A second large species (~10 cm long) also occurred at 1,722 m in the Gulf of California. The third large species (~15 cm long) was found at ~3,700 m depth near a newly discovered carbonate-hosted hydrothermal vent in the Gulf of California. Finally, a small species (~2.5 cm long), found near a whale carcass at 631 m depth in Monterey Submarine Canyon (California), resembles the two nominal species from Sweden. Analysis of whole mitochondrial genomes places the three larger species as a sister clade to the smaller Atlantic and Pacific species. Phylogenomic analyses of transcriptomic sequences support placement of Xenacoelomorpha as sister to Nephrozoa or Protostomia.


Assuntos
Organismos Aquáticos/classificação , Filogenia , Animais , Organismos Aquáticos/genética , Oceano Atlântico , Teorema de Bayes , California , Feminino , Genes , Genoma Mitocondrial/genética , Fontes Hidrotermais , Funções Verossimilhança , Masculino , México , Modelos Biológicos , Oceano Pacífico , Especificidade da Espécie , Suécia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA