Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
J Microbiol Biol Educ ; : e0006924, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291990

RESUMO

The global threat of antibiotic-resistant infections has resulted in health organizations compiling an Antibiotic Stewardship Program (ASP), in which the education of current and future medical prescribers and farmers is central to the preservation of current and future antimicrobial treatments. The purpose of this study was to assess and compare the knowledge and perceived threat of antibiotics and antibiotic resistance, as well as the perceived benefit of antibiotic stewardship education, among undergraduate students majoring in Biology and Agriculture at Fort Hays State University. I hypothesized that the difference in knowledge and perceptions between Biology and Agriculture students would be significantly different because of differences in curriculum requirements. Framed by the health belief model (HBM), a quantitative cross-sectional study was conducted using a structured online survey of 136 undergraduate student participants. A χ2 analysis was used to assess differences between the respondents in their knowledge and perceptions of antibiotics, antibiotic resistance, and antibiotic stewardship education at the undergraduate level. Results showed that, although Agriculture students perceived antibiotic resistance as less threatening than Biology/pre-health students, both undergraduate groups were knowledgeable about the problem and wanted more academic education on the issue. These findings create a solid foundation to initiate a conversation on the curriculum development to meet ASP goals and objectives at the undergraduate level while contributing to an ongoing international effort to educate future prescribers and farmers on the importance of antibiotics in medicine and farming and to reduce antibiotic resistance.

2.
Hum Mol Genet ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39277796

RESUMO

Genomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28. However, because MDS CNVs span MECP2 and additional genes, we generated human neurons from multiple MDS patient-derived induced pluripotent cells (iPSCs) to evaluate the benefit of using an ASO against MECP2 in a MDS human neuronal context. Importantly, we identified a signature of genes that is partially and qualitatively modulated upon ASO treatment, pinpointed genes sensitive to MeCP2 function, and altered in a model of Rett syndrome, a neurological disorder caused by loss of MeCP2 function. Furthermore, the signature contained genes that are aberrantly altered in unaffected control human neurons upon MeCP2 depletion, revealing gene expression programs qualitatively sensitive to MeCP2 levels in human neurons. Lastly, ASO treatment led to a partial rescue of abnormal neuronal morphology in MDS neurons. All together, these data demonstrate that ASOs targeting MECP2 benefit human MDS neurons. Moreover, our study establishes a paradigm by which to evaluate the contribution of individual genes within a CNV to pathogenesis and to assess their potential as a therapeutic target.

3.
Eur J Hum Genet ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256534

RESUMO

Despite extensive research into the genetic underpinnings of neurodevelopmental disorders (NDD), many clinical cases remain unresolved. We studied a female proband with a NDD, mildly dysmorphic facial features, and brain stem hypoplasia on neuroimaging. Comprehensive genomic analyses revealed a terminal 5p loss and a terminal 18q gain in the proband while a diploid copy number for chromosomes 5 and 18 in both parents. Genomic investigations in the proband identified an unbalanced translocation t(5;18) with additional genetic material from chromosome 2 (2q31.3) inserted at the breakpoint, pointing to a complex chromosomal rearrangement (CCR) involving 5p15.2, 2q31.3, and 18q21.32. Breakpoint junction analyses enabled by long-read genome sequencing unveiled the presence of four distinct junctions in the father, who is a carrier of a balanced CCR. The proband inherited from the father both the abnormal chromosome 5 resulting in segmental aneusomies of chr5 (loss) and chr18 (gain) and a der(2) homologue. Evidences suggest a chromoplexy mechanism for this CCR derivation, involving double-strand breaks (DSBs) repaired by non-homologous end joining (NHEJ) or alternative end joining (alt-EJ). The complexity of the CCR and the segregation of homologues elucidate the genetic model for this family. This study demonstrates the importance of combining multiple genomic technologies to uncover genetic causes of complex neurodevelopmental syndromes and to better understand genetic disease mechanisms.

4.
Lasers Med Sci ; 39(1): 220, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153078

RESUMO

In the quest to uncover biological cues that help explain organic changes brought on by an external stimulus, like stress, new technologies have become necessary. The Laser Speckle Contrast Analysis (LASCA) approach is one of these technologies that may be used to analyze biological data, including respiratory rate (RR) intervals, and then use the results to determine heart rate variability (HRV Thus, to evaluate the stress brought on by physical activity, this study used the LASCA approach. A stress induction procedure involving physical exertion was employed, and the results were compared to other established techniques (cortisol analysis and ECG signal) to verify the LASCA methodology as a tool for measuring HRV and stress. The study sample comprised 27 willing participants. The technique involving LASCA allowed for the non-invasive (non-contact) acquisition of HRV and the study of stress. Furthermore, it made it possible to gather pertinent data, such as recognizing modifications to the thermoregulation, peripheral vasomotor tonus, and renin-angiotensin-aldosterone systems that were brought on by elevated stress and, as a result, variations in HRV readings.


Assuntos
Frequência Cardíaca , Estresse Fisiológico , Humanos , Frequência Cardíaca/fisiologia , Projetos Piloto , Masculino , Adulto , Feminino , Estresse Fisiológico/fisiologia , Adulto Jovem , Eletrocardiografia/métodos , Lasers , Hidrocortisona , Taxa Respiratória/fisiologia
5.
Acta Obstet Gynecol Scand ; 103(8): 1564-1569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872454

RESUMO

INTRODUCTION: Distinguishing paracentric inversions (PAIs) from chromosomal insertions has traditionally relied on fluorescent in situ hybridization (FISH) techniques, but recent advancements in high-throughput sequencing have enabled the use of genome sequencing for such differentiation. In this study, we present a 38-year-old male carrier of a paracentric inversion on chromosome 2q, inv (2)(q31.2q34), whose partner experienced recurrent miscarriages. MATERIAL AND METHODS: FISH analysis confirmed the inversion, and genome sequencing was employed for detailed characterization. RESULTS: Preimplantation genetic testing (PGT) revealed that all assessed embryos were balanced, consistent with the low risk of unbalanced offspring associated with PAIs. While PAI carriers traditionally exhibit low risk of producing unbalanced offspring, exceptions exist due to crossover events within the inversion loop. Although the sample size was limited, the findings align with existing sperm study data, supporting the rare occurrence of unbalanced progeny in PAI carriers. CONCLUSIONS: This study highlights the possibility of characterizing PAIs using genome sequencing to enable correct reproductive counseling and PGT decisions. Detailed characterization of a PAI is crucial for understanding potential outcomes and guiding PGT strategies, as accurate knowledge of the inversion size is essential for appropriate method selection in PGT. Given the very low risk of unbalanced offspring in PAI carriers, routine PGT may not be warranted but should be considered in specific cases with a history of unbalanced progeny or recurrent miscarriages. This study contributes to our understanding of PAI segregation and its implications for reproductive outcomes.


Assuntos
Inversão Cromossômica , Diagnóstico Pré-Implantação , Humanos , Masculino , Adulto , Diagnóstico Pré-Implantação/métodos , Feminino , Gravidez , Testes Genéticos/métodos , Aborto Habitual/genética , Cromossomos Humanos Par 2/genética , Hibridização in Situ Fluorescente , Sequenciamento Completo do Genoma
6.
Cell Genom ; 4(7): 100590, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908378

RESUMO

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.


Assuntos
Haplótipos , Humanos , Haplótipos/genética , Hibridização Genômica Comparativa , Variação Estrutural do Genoma/genética , Genoma Humano/genética , Duplicação Gênica/genética
7.
Genome Med ; 16(1): 72, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811945

RESUMO

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Assuntos
Deficiência Intelectual , Transcriptoma , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Deficiência Intelectual/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Peixe-Zebra/genética
8.
medRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712270

RESUMO

Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.

9.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562723

RESUMO

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to offer phased variants across 389 medically important yet complex autosomal genes. We highlight TADGP accuracy across eleven control samples and compare it to WGS. This demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare diseases or complementing previously sequenced samples to gain insights into these complex genes. TADGP revealed several candidate variants across all cases and provided insight into LPA diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, KCNE1). Nevertheless, the annotation of the variants across these 389 medically important genes remains challenging due to their underrepresentation in ClinVar and gnomAD. Consequently, we also offer an annotation resource to enhance the evaluation and prioritization of these variants. Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to routinely assess the dark regions of the human genome with clinical relevance.

10.
Res Sq ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464263

RESUMO

Despite extensive research into the genetic underpinnings of neurodevelopmental disorders (NDD), many clinical cases remain unresolved. We studied a female proband with a NDD, mildly dysmorphic facial features, and brain stem hypoplasia on neuroimaging. Comprehensive genomic analyses revealed a terminal 5p loss and terminal 18q gain in the proband while a diploid copy number for chromosomes 5 and 18 in both parents. Genomic investigations in the proband identified an unbalanced translocation t(5;18) with additional genetic material from chromosome 2 (2q31.3) inserted at the breakpoint, pointing to a complex chromosomal rearrangement (CCR) involving 5p15.2, 2q31.3, and 18q21.32. Breakpoint junction analyses enabled by long read genome sequencing unveiled the presence of four distinct junctions in the father, who is carrier of a balanced CCR. The proband inherited from the father both the abnormal chromosome 5 resulting in segmental aneusomies of chr5 (loss) and chr18 (gain) and a der(2) homologue. Evidences suggest a chromoplexy mechanism for this CCR derivation, involving double-strand breaks (DSBs) repaired by non-homologous end joining (NHEJ) or alternative end joining (alt-EJ). The complexity of the CCR and the segregation of homologues elucidate the genetic model for this family. This study demonstrates the importance of combining multiple genomic technologies to uncover genetic causes of complex neurodevelopmental syndrome and to better understand genetic disease mechanisms.

11.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504027

RESUMO

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Assuntos
Cromossomos , Variações do Número de Cópias de DNA , Humanos , Inversão Cromossômica , Sequência de Bases , Células Germinativas , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
12.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352399

RESUMO

Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation. Through a variety of mechanisms, repeats are involved in generating structural rearrangements such as deletions, duplications, inversions, and translocations, which can have the potential to impact human health. Despite their significance, repetitive regions including tandem repeats, transposable elements, segmental duplications, and low-copy repeats remain a challenge to characterize due to technological limitations inherent to many sequencing methodologies. We performed genome-wide analyses and comparisons of direct and inverted repeated sequences in the latest available human genome reference assemblies including GRCh37 and GRCh38 and the most recent telomere-to-telomere alternate assembly (T2T-CHM13). Overall, the composition and distribution of direct and inverted repeats identified remains similar among the three assemblies but we observed an increase in the number of repeated sequences detected in the T2T-CHM13 assembly versus the reference assemblies. As expected, there is an enrichment of repetitive regions in the short arms of acrocentric chromosomes, which had been previously unresolved in the human genome reference assemblies. We cross-referenced the identified repeats with protein-coding genes across the genome to identify those at risk for being involved in genomic disorders. We observed that certain gene categories, such as olfactory receptors and immune response genes, are enriched among those impacted by repeated sequences likely contributing to human diversity and adaptation. Through this analysis, we have produced a catalogue of direct and inversely oriented repeated sequences across the currently three most widely used human genome assemblies. Bioinformatic analyses of these repeats and their contribution to genome architecture can reveal regions that are most susceptible to genomic instability. Understanding how the architectural genomic features of repeat pairs such as their homology, size and distance can lead to complex genomic rearrangement formation can provide further insights into the molecular mechanisms leading to genomic disorders and genome evolution. Author summary: This study focused on the characterization of intrachromosomal repeated sequences in the human genome that can play important roles in shaping chromosome structure and generating new genomic variation in three human genome assemblies. We observed an increase in the number of repeated sequence pairs detected in the most recent telomere-to-telomere alternate assembly (T2T-CHM13) compared to the reference assemblies (GRCh37 and GRCh38). We observed an enrichment of repeats in the T2T-CHM13 acrocentric chromosomes, which had been previously unresolved. Importantly, our study provides a catalogue of direct and inverted repeated sequences across three commonly used human genome assemblies, which can aid in the understanding of genomic architecture instability, evolution, and disorders. Our analyses provide insights into repetitive regions in the human genome that may contribute to complex genomic rearrangements.

13.
Rev. Flum. Odontol. (Online) ; 1(63): 66-73, jan-abr. 2024.
Artigo em Português | LILACS, BBO - Odontologia | ID: biblio-1566810

RESUMO

O referido trabalho visa apresentar a importância do cirurgião dentista, especialista em odontopediatria, em ambiente hospitalar, esclarecendo sinais e manifestações orais que devam despertar a atenção de um possível abuso sexual infantil, a fim de que seja feita uma notificação plausível e baseada em evidências. Esta revisão de literatura tem bibliografia baseada em artigos da Constituição Federal e artigos científicos buscados na plataforma Scientific Electronic Library Online (SciELO). A busca foi feita por meio de palavras-chave em um intervalo de 2002 a 2022, não se resumindo a um período máximo de 10 anos devido à dificuldade em encontrar referências atuais. Cerca de 29 artigos foram encontrados e após a leitura do título e resumo de cada um, 14 foram excluídos em razão de seu conteúdo não estar relacionado ao tema proposto. 15 foram lidos na íntegra. 3 manuais disponibilizados para profissionais da saúde e artigos do Estatuto da Criança e do Adolescente, bem como 1 lei municipal do Rio de Janeiro foram utilizados. Como resultado geral, foram encontradas manifestações orais e Infecções Sexuais Transmissíveis (ISTs) mais recorrentes, sinais apresentados por pacientes vítimas de abuso sexual, quais condutas obrigatórias a seguir e a importância do odontopediatra, em ambiente hospitalar, mais precisamente na Unidade de Terapia Intensiva.


This work aims to present the importance and role of the dental surgeon, specialist in pediatric dentistry, in a hospital environment, clarifying which signs, and oral manifestations should draw attention to a possible child sexual abuse, in order to make a plausible report and evidence-based. A literature review was carried out with bibliography based on articles of the Federal Constitution and scientific articles found in platform Scientific Electronic Library Online (SciELO). The search was carried out using keywords in a range from 2002 to 2022, not limited to a maximum period of 10 years due to the difficulty in finding current references. About 29 articles were found and after reading the title and abstract of each one, 14 were excluded because their content was not related to the proposed theme. 15 were read in full. 3 manuals made available to health professionals and articles from the Child and Adolescent Statute, as well as 1 municipal law of Rio de Janeiro were used. As a general result, more recurrent oral manifestations and Sexually Transmitted Infections (STIs) were found, signs presented by patients victims of sexual abuse, what mandatory conducts to follow and the importance of the pediatric dentist in a hospital environment, more precisely in the Intensive Care Unit.


Assuntos
Unidades de Terapia Intensiva
15.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

16.
Nat Biotechnol ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168980

RESUMO

Calling structural variations (SVs) is technically challenging, but using long reads remains the most accurate way to identify complex genomic alterations. Here we present Sniffles2, which improves over current methods by implementing a repeat aware clustering coupled with a fast consensus sequence and coverage-adaptive filtering. Sniffles2 is 11.8 times faster and 29% more accurate than state-of-the-art SV callers across different coverages (5-50×), sequencing technologies (ONT and HiFi) and SV types. Furthermore, Sniffles2 solves the problem of family-level to population-level SV calling to produce fully genotyped VCF files. Across 11 probands, we accurately identified causative SVs around MECP2, including highly complex alleles with three overlapping SVs. Sniffles2 also enables the detection of mosaic SVs in bulk long-read data. As a result, we identified multiple mosaic SVs in brain tissue from a patient with multiple system atrophy. The identified SV showed a remarkable diversity within the cingulate cortex, impacting both genes involved in neuron function and repetitive elements.

17.
Trends Mol Med ; 30(2): 136-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044158

RESUMO

Inherited retinal diseases (IRDs) stem from genetic mutations that result in vision impairment. Gene therapy shows promising therapeutic potential, exemplified by the encouraging initial results with voretigene neparvovec. Nevertheless, the associated costs impede widespread access, particularly in low-to-middle income countries. The primary challenge remains: how can we make these therapies globally affordable? Leveraging advancements in mRNA therapies might offer a more economically viable alternative. Furthermore, transitioning to nonviral delivery systems could provide a dual benefit of reduced costs and increased scalability. Relevant stakeholders must collaboratively devise and implement a research agenda to realize the potential of mRNA strategies in equitable access to treatments to prevent vision loss.


Assuntos
Doenças Retinianas , Humanos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Doenças Retinianas/genética , Doenças Retinianas/terapia , Terapia Genética/métodos , Mutação
18.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153174

RESUMO

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Software , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Homozigoto , Doenças Raras/genética
19.
Stem Cell Res ; 74: 103292, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154383

RESUMO

MECP2 Duplication Syndrome (MDS) is a rare, severe neurodevelopmental disorder arising from duplications in the Xq28 region containing the MECP2 gene that predominantly affects males. We generated five human induced pluripotent stem cell (iPSC) lines from the fibroblasts of individuals carrying between 0.355 and 11.2 Mb size duplications in the chromosomal locus containing MECP2. All lines underwent extensive testing to confirm MECP2 duplication and iPSC-related features such as morphology, pluripotency markers, and trilineage differentiation potential. These lines are a valuable resource for molecular and functional studies of MDS as well as screening for a variety of therapeutic approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Humanos , Masculino , Diferenciação Celular , Duplicação Gênica , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética
20.
RSC Adv ; 13(50): 35493-35499, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38058560

RESUMO

The impact of vaccination on the world's population is difficult to calculate. For developing different types of vaccines, adjuvants are substances added to vaccines to increase the magnitude and durability of the immune response and the effectiveness of the vaccine. This work explores the potential use of spherical gold nanoparticles (AuNPs) as adjuvants. Thus, we employed docking techniques and molecular mechanics to describe how a AuNP 7.0 nm in diameter interacts with cell signaling pathway proteins. Initially, we used X-ray crystallization data of the proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K, and NF-Kß to study the adsorption with an AuNP through molecular docking. Therefore, interaction energies were obtained for the AuNP complexes and individual proteins, as well as the AuNP and OVA complex (AuNP@OVA) with each cellular protein, respectively. Results showed that AuNPs had the highest affinity for OVA individually, followed by glutathione, ASC PYCARD domain, LC3, PI3K, NF-Kß, and TLR4. Furthermore, when evaluating the AuNP@OVA complex, glutathione showed a greater affinity with more potent interaction energy when compared to the other studied systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA