Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(22): 62602-62624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947378

RESUMO

A clay-based adsorbent (CBA) was purified from a sustainable precursor (raw clay, RC), which was obtained from the Amazon region in Brazil. The CBA was characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Brunauer-Emmet-Teller surface area (SBET, RC = 23.386 m2.g-1, CBA = 33.020 m2.g-1), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), thermogravimetric analysis (TGA), cation exchange capacity (CEC, CBA = 44.75 cmol/kg), and point of zero charge analyses (pHPZC, CBA = 2.20). Subsequently, CBA was used to adsorb basic yellow 2 (BY2) dye from aqueous solutions. A CBA dosage (1 g/L), initial concentration of dye (C0 = 15 mg/L), and pH (5.6) were ideal conditions for the BY2 dye removal of ~ 98%. The BY2 kinetics was better represented by the pseudo-first-order (PFO) model while the BY2 equilibrium was well represented by the Sips model, with a maximum adsorption capacity of qms = 18.04 mg/g at 28 °C. The negative values of ΔG° and ΔH° showed that the studied process is spontaneous and exothermic, while the values of isosteric heat (∆Hst, -16 to -20 kJ/mol) suggest a predominance of physical interactions. The molecular chemical reactivity of BY2 was investigated using quantum chemical descriptors calculated based on Density Functional Theory (DFT) optimization of the dye molecule, and the results revealed a large energy gap value (4.3900 eV) and considerable chemical hardness (η = 2.1950 eV). Therefore, the correlation between DFT and experimental results consistently sustains that BY2 dye tends to be adsorbed on the CBA surface by electrostatic interactions, thus, this is the possible adsorption mechanism of this process.


Assuntos
Benzofenoneídio , Poluentes Químicos da Água , Argila/química , Termodinâmica , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
2.
J Radiol Prot ; 38(4): 1284-1292, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30019693

RESUMO

Many research groups have studied nuclear medicine image quantification to improve its accuracy in dose estimation. This work aims to evaluate the influence of the source calibration position for absorbed dose calculation for a 131I-NaI therapy using Monte Carlo (MC) simulations. The calibration approach consisted of a cylindrical phantom filled with water. A cylindrical 131I source with 361.1 ± 3.6 kBq ml-1 was positioned at the center of the phantom and its outer part. Images were acquired with 150 00 counts per projection image acquired with SPECT detector (high counts density-HCD) and 3000 counts per projection (low counts density-LCD). MC simulations, performed with GATE code, were validated by comparing the S values of a water sphere uniformly filled with 131I, as from the sphere model of OLINDA/EXM 1.1. Calibration factors deviation between central and peripheral calibrations is more significant for HCD (18.3%) than for LCD images (3.7%). The 3D dose distribution map obtained from GATE resulted in a dose factor equal to 1.5 × 10-3 mGy/(MBq.s). For both HCD and LCD images, the commonly used approach, which employs the central source calibration to obtain the dose from a peripheral source, resulted in dose overestimation. Results suggest that organ dose calculation can be improved considering the organ position in the field of view. Finally, patients' radiation protection in dosimetry studies could be improved considering the calibration source position, due to the superior accuracy in dose calculation.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Radiometria/métodos , Dosagem Radioterapêutica , Tomografia Computadorizada de Emissão de Fóton Único , Calibragem , Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Iodeto de Sódio , Tomografia Computadorizada de Emissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA