Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 11: 568049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154726

RESUMO

Macphail's "null hypothesis," that there are no differences in intelligence, qualitative, or quantitative, between non-human vertebrates has been controversial. This controversy can be useful if it encourages interest in acquiring a detailed understanding of how non-human animals express flexible problem-solving capacity ("intelligence"), but limiting the discussion to vertebrates is too arbitrary. As an example, we focus here on Portia, a spider with an especially intricate predatory strategy and a preference for other spiders as prey. We review research on pre-planned detours, expectancy violation, and a capacity to solve confinement problems where, in each of these three contexts, there is experimental evidence of innate cognitive capacities and reliance on internal representation. These cognitive capacities are related to, but not identical to, intelligence. When discussing intelligence, as when discussing cognition, it is more useful to envisage a continuum instead of something that is simply present or not; in other words, a continuum pertaining to flexible problem-solving capacity for "intelligence" and a continuum pertaining to reliance on internal representation for "cognition." When envisaging a continuum pertaining to intelligence, Daniel Dennett's notion of four Creatures (Darwinian, Skinnerian, Popperian, and Gregorian) is of interest, with the distinction between Skinnerian and Popperian Creatures being especially relevant when considering Portia. When we consider these distinctions, a case can be made for Portia being a Popperian Creature. Like Skinnerian Creatures, Popperian Creatures express flexible problem solving capacity, but the manner in which this capacity is expressed by Popperian Creatures is more distinctively cognitive.

2.
J Exp Psychol Anim Learn Cogn ; 46(1): 1-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31647265

RESUMO

There is considerable evidence for computationally complex behavior, that is, behavior that appears to require the equivalent of mathematical calculation by the organism. Spatial navigation by path integration is perhaps the best example. The most influential account of such behavior has been Gallistel's (1990) computational-representational theory, which assumes that organisms represent key environmental variables such as direction and distance traveled as real numbers stored in engrams and are able to perform arithmetic computations on those representations. But how are these computations accomplished? A novel perspective is gained from the historical development of algebra. We propose that computationally complex behavior suggests that the perceptual system represents an algebraic field, which is a mathematical concept that expresses the structure underlying arithmetic. Our field representation hypothesis predicts that the perceptual system computes 2 operations on represented magnitudes, not 1. We review recent research in which human observers were trained to estimate differences and ratios of stimulus pairs in a nonsymbolic task without explicit instruction (Grace, Morton, Ward, Wilson, & Kemp, 2018). Results show that the perceptual system automatically computes two operations when comparing stimulus magnitudes. A field representation offers a resolution to longstanding controversies in psychophysics about which of 2 algebraic operations is fundamental (e.g., the Fechner-Stevens debate), overlooking the possibility that both might be. In terms of neural processes that might support computationally complex behavior, our hypothesis suggests that we should look for evidence of 2 operations and for symmetries corresponding to the additive and multiplicative groups. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Comportamento Animal/fisiologia , Conceitos Matemáticos , Psicofísica , Navegação Espacial/fisiologia , Animais , Humanos
3.
Behav Processes ; 138: 105-122, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28245979

RESUMO

Evarcha culicivora, an East African salticid spider, is a mosquito specialist and it is also a plant specialist, with juveniles visiting plants primarily for acquiring nectar meals and adults visiting plants primarily as mating sites. The hypothesis we consider here is that there are ontogenetic shifts in cognition-related responses by E. culicivora to plant odour. Our experiments pertain to cross-modality priming effects in three specific contexts: executing behaviour that we call the 'visual inspection of plants' (Experiment 1), adopting selective visual attention to specific visual targets (Experiment 2) and becoming prepared to respond rapidly to specific visual targets (Experiment 3). Our findings appear not to be a consequence of salient odours in general elevating E. culicivora's motivation to respond to salient visual stimuli. Instead, effects were specific to particular odours paired with particular visual targets, with the salient volatile plant compounds being caryophyllene and humulene. We found evidence that prey odour primes juveniles and adults to respond to seeing specifically prey, mate odour primes adults to respond to seeing specifically mates and plant odour primes juveniles to respond to seeing specifically flowers. However, plant odour appears to prime adults to respond to seeing specifically a mate associated with a plant.


Assuntos
Comportamento Alimentar/fisiologia , Aranhas/crescimento & desenvolvimento , Aranhas/fisiologia , Fatores Etários , Animais , Odorantes , Estimulação Luminosa , Percepção Visual
4.
R Soc Open Sci ; 2(5): 140426, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26064651

RESUMO

Using Evarcha culicivora, an East African jumping spider (Salticidae), we investigate how nectar meals function in concert with predation specifically at the juvenile stage between emerging from the egg sac and the first encounter with prey. Using plants and using artificial nectar consisting of sugar alone or sugar plus amino acids, we show that the plant species (Lantana camara, Ricinus communis, Parthenium hysterophorus), the particular sugars in the artificial nectar (sucrose, fructose, glucose, maltose), the concentration of sugar (20%, 5%, 1%) and the duration of pre-feeding fasts (3 days, 6 days) influence the spider's prey-capture proficiency on the next day after the nectar meal. However, there were no significant effects of amino acids. Our findings suggest that benefits from nectar feeding are derived primarily from access to particular sugars, with fructose and sucrose being the most beneficial, glucose being intermediate and maltose being no better than a water-only control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA