Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675825

RESUMO

Candidate vaccines against African swine fever virus (ASFV) based on naturally attenuated or genetically modified viruses have the potential to generate protective immune responses, although there is no consensus on what defines a protective immune response against ASFV. Studies, especially in sensitive host species and focused on unravelling protective mechanisms, will contribute to the development of safer and more effective vaccines. The present study provides a detailed analysis of phenotypic and functional data on cellular responses induced by intradermal immunization and subsequent boosting of domestic pigs with the naturally attenuated field strain Lv17/WB/Rie1, as well as the mechanisms underlying protection against intramuscular challenge with the virulent genotype II Armenia/07 strain. The transient increase in IL-8 and IL-10 in serum observed after immunization might be correlated with survival. Protection was also associated with a robust ASFV-specific polyfunctional memory T-cell response, where CD4CD8 and CD8 T cells were identified as the main cellular sources of virus-specific IFNγ and TNFα. In parallel with the cytokine response, these T-cell subsets also showed specific cytotoxic activity as evidenced by the increased expression of the CD107a degranulation marker. Along with virus-specific multifunctional CD4CD8 and CD8 T-cell responses, the increased levels of antigen experienced in cytotoxic CD4 T cells observed after the challenge in immunized pigs might also contribute to controlling virulent infection by killing mechanisms targeting infected antigen-presenting cells. Future studies should elucidate whether the memory T-cell responses evidenced in the present study persist and provide long-term protection against further ASFV infections.

2.
Pathogens ; 12(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375501

RESUMO

African swine fever (ASF) is a viral disease of swine with a huge impact due to its high mortality. Lately, the disease has actively spread around the world, affecting new areas from which it had been eradicated long ago. To date, ASF control is carried out by the implementation of strict biosecurity measures such as the early identification of infected animals. In this work, two fluorescent rapid tests were developed to improve the sensitivity of point-of-care diagnosis of ASF. For antigen (Ag) detection in blood, a double-antibody sandwich fluorescent lateral flow assay (LFA) was developed, employing a newly developed recombinant antibody to the VP72 of the virus. To complement the diagnosis, a double-recognition fluorescent LFA was developed using the VP72 for the detection of specific antibodies (Ab) in sera or blood. Both assays statistically improved the detection of the disease when compared to the commercial colorimetric assays INgezim® ASFV CROM Ag and INgezim® PPA CROM Anticuerpo, respectively, with higher statistical significance between 11 and 39 days post-infection. From the observation of results, it can be concluded that the combination of both Ag-LFA and Ab-LFA assays would facilitate the identification of infected animals, regardless of post-infection time.

3.
Front Vet Sci ; 10: 1112850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761884

RESUMO

Introduction: African swine fever (ASF) is a contagious viral disease of pigs and wild boar that poses a major threat to the global swine industry. The genotype II African swine fever virus (ASFV) entered the European Union (EU) in 2014 and since then fourteen countries have been affected, Italy and North Macedonia being the last in 2022. While whole genome sequencing remains the gold standard for the identification of new genetic markers, sequencing of multiple loci with significant variations could be used as a rapid and cost-effective alternative to track outbreaks and study disease evolution in endemic areas. Materials and methods: To further our understanding of the epidemiology and spread of ASFV in Europe, 382 isolates collected during 2007 to 2022 were sequenced. The study was initially performed by sequencing the central variable region (CVR), the intergenic region (IGR) between the I73R and I329L genes and the O174L and K145R genes. For further discrimination, two new PCRs were designed to amplify the IGR between the 9R and 10R genes of the multigene family 505 (MGF505) and the IGR between the I329L and I215L genes. The sequences obtained were compared with genotype II isolates from Europe and Asia. Results: The combination of the results obtained by sequencing these variable regions allowed to differentiate the European II-ASFV genotypes into 24 different groups. In addition, the SNP identified in the IGR I329L-I215L region, not previously described, grouped the viruses from North Macedonia that caused the 2022 outbreaks with viruses from Romania, Bulgaria, Serbia and Greece, differentiating from other genotype II isolates present in Europe and Asia. Furthermore, tandem repeat sequence (TRS) within the 9R-10R genes of the multigene family 505 (MGF505) revealed eight different variants circulating. Discussion: These findings describe a new multi-gene approach sequencing method that can be used in routine genotyping to determine the origin of new introductions in ASF-free areas and track infection dynamics in endemic areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA