Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 644: 123353, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37647976

RESUMO

In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.


Assuntos
Transição de Fase , Diclofenaco/química , Soluções/química , Poloxâmero/química , Reologia , Temperatura , Espectroscopia de Ressonância Magnética , Difusão
2.
Carbohydr Polym ; 301(Pt A): 120309, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436870

RESUMO

Hydrogels based on hyaluronic acid (HA) and agarose-carbomer (AC) raised an increasing interest as drug delivery systems. The complex architecture of the polymer network, such as mesh size, HA molecular weight and drug-polymer non covalent interactions across the 3D polymer matrix strongly influence the release capability/profile of these materials. In this study, AC-HA hydrogels with different mesh sizes have been prepared and characterised. High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy has been used to investigate the motion of two drugs, such as ethosuximide (neutral molecule) and sodium salicylate (net negative charge) within the AC and AC-HA hydrogel networks. Analysis of the experimental data provides evidence of superdiffusive motion for all formulations containing sodium salicylate, while ethosuximide molecules undergo unrestricted diffusion within the gel matrix. We further speculate that the superdiffusive motion, observed at the nanoscale, can be responsible for the faster release of sodium salicylate from all hydrogel formulations.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Salicilato de Sódio , Etossuximida , Espectroscopia de Ressonância Magnética , Sefarose/química
3.
J Phys Chem B ; 126(43): 8777-8790, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269122

RESUMO

Hydrogenases are a group of enzymes that have caught the interest of researchers in renewable energies, due to their ability to catalyze the redox reaction of hydrogen. The exploitation of hydrogenases in electrochemical devices requires their immobilization on the surface of suitable electrodes, such as graphite. The orientation of the enzyme on the electrode is important to ensure a good flux of electrons to the catalytic center, through an array of iron-sulfur clusters. Here we present a computational approach to determine the possible orientations of a [NiFe] hydrogenase (PDB 1e3d) on a planar electrode, as a function of pH, salinity, and electrode potential. The calculations are based on the solution of the linearized Poisson-Boltzmann equation, using the PyGBe software. The results reveal that electrostatic interactions do not truly immobilize the enzyme on the surface of the electrode, but there is instead a dynamic equilibrium between different orientations. Nonetheless, after averaging over all thermally accessible orientations, we find significant differences related to the solution's salinity and pH, while the effect of the electrode potential is relatively weak. We also combine models for the protein adsoption-desorption equilibria and for the electron transfer between the proteins and the electrode to arrive at a prediction of the electrode's activity as a function of the enzyme concentration.


Assuntos
Hidrogenase , Hidrogenase/metabolismo , Eletricidade Estática , Eletrodos , Hidrogênio/metabolismo , Transporte de Elétrons , Oxirredução , Proteínas/metabolismo
4.
Comput Biol Chem ; 98: 107663, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35299007

RESUMO

Substrate availability is a key issue in the process design for chemicals production through enzymatic reactions. In whole cell bioconversions, the introduction of an organic solvent provides an efficient and flexible way to control substrate availability. Although successful, this route has often been based on trial and error experiments, and very little is known about the role of the solvent in the whole process. Modeling the transport mechanism of substrate molecules into cell membranes and the solvent-membrane interaction represents a first step toward a better understanding of the mechanisms underlying bioconversion efficiency. Hereafter, we report and discuss the results of such a modeling activity, which we carried out by means of molecular dynamics simulations. To better approach real-world experimental settings, we explicitly accounted for the possibility of solvent stirring. Our results are in agreement with the experimental data, paving the way to the application of molecular modeling in this recent and fast growing area of organic syntheses.


Assuntos
Simulação de Dinâmica Molecular , Membrana Celular , Solventes/química
5.
J Mol Graph Model ; 105: 107886, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706219

RESUMO

Unintentionally released in the environment as by-products of industrial activities, dioxins, exemplified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), represent a primary concern for human health. Exposure to these chemicals is known to produce a broad spectrum of adverse effects, including cancer. The main mechanism of action of TCDD in humans involves binding to the Aryl hydrocarbon Receptor (AhR). Although qualitatively established, TCDD capture by the AhR remains poorly characterized at the molecular level. Starting from a recently developed structural model of the human AhR PAS-B domain, in this work we attempt the identification of viable TCDD access pathways to the human AhR ligand binding domain by means of molecular dynamics. Based on the result of metadynamics simulations, we identify two main regions that may potentially serve as access paths for TCDD. For each path, we characterize the residues closely interacting with TCDD, thereby suggesting a possible mechanism for TCDD capture. Our results are reviewed and discussed in the light of the available information about Human AhR structure and functions.


Assuntos
Dibenzodioxinas Policloradas , Humanos , Ligantes , Dibenzodioxinas Policloradas/toxicidade , Ligação Proteica
6.
ACS Polym Au ; 1(3): 175-186, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855656

RESUMO

Despite intense investigation, the mechanisms governing the mechanical reinforcement of polymers by dispersed nanoparticles have only been partially clarified. This is especially true for the ultimate properties of the nanocomposites, which depend on their resistance to fracture at large deformations. In this work, we adopt molecular dynamics simulations to investigate the mechanical properties of silica/polybutadiene rubber, using a quasi-atomistic model that allows a meaningful description of bond breaking and fracture over relatively large length scales. The behavior of large nanocomposite models is explored systematically by tuning the cross-linking, grafting densities, and nanoparticle concentration. The simulated stress-strain curves are interpreted by monitoring the breaking of chemical bonds and the formation of voids, up to complete rupture of the systems. We find that some chemical bonds, and particularly the S-S linkages at the rubber-nanoparticle interface, start breaking well before the appearance of macroscopic features of fracture and yield.

7.
ACS Appl Mater Interfaces ; 12(21): 23800-23811, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32352774

RESUMO

Ternary systems consisting of polymers, lithium salts, and ionic liquids (ILs) are promising materials for the development of next-generation lithium batteries. The ternary systems combine the advantages of polymer-salt and IL-salt systems, thus providing media with high ionic conductivity and solid-like mechanical properties. In this work, we apply nuclear magnetic resonance 1H microimaging [magnetic resonance imaging (MRI)] techniques and molecular dynamics (MD) simulations to study the translational and rotational dynamics of the N-butyl-N-methylpyrrolidinium (PYR14) cation in poly(ethylene oxide) (PEO) matrices containing the lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) and the PYR14TFSI IL. The analysis of diffusion-weighted images in PEO/LiTFSI/PYR14TFSI samples with varying mole ratios (10:1:x, with x = 1, 2, 3, and 4) shows, in a wide range of temperatures, a spatially heterogeneous distribution of PYR14 diffusion coefficients. Their weight-averaged values increase with IL content but remain well below the values estimated for the neat IL. The analysis of T2 (spin-spin relaxation) parametric images shows that the PEO matrix significantly hinders PYR14 rotational freedom, which is only partially restored by increasing the IL content. The MD simulations, performed on IL-filled cavities within the PEO matrix, reveal that PYR14 diffusion is mainly affected by Li/TFSI coordination within the IL phase. In agreement with MRI experiments, increasing the IL content increases the PYR14 diffusion coefficients. Finally, the analysis of MD trajectories suggests that Li diffusion mostly develops within the IL phase, although a fraction of Li cations is strongly coordinated by PEO oxygen atoms.

8.
J Control Release ; 305: 110-119, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31121281

RESUMO

Polymeric hydrogels are promising candidates for drug delivery applications, thanks to their ability to encapsulate, transport and release a wide range of chemicals. The successful application of these materials requires a deep understanding of the mechanisms governing solute transport at the nanoscale and its impact on release kinetics. In this work, we investigate the translational diffusion of ibuprofen loaded in anionic agarose-carbomer (AC) hydrogels by 1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy, and compare it to its macroscopic release kinetics. The analysis of the experimental NMR data provides the first evidence of superdiffusion for ibuprofen in AC hydrogels. Superdiffusive transport is observed in the majority of our samples, especially those with the smallest mesh size (7 nm) and highest ibuprofen concentrations (90-120 mg/mL). This outcome is rationalized in terms of heavy-tailed distributions of spatial displacements (Lèvy flights) and of waiting times, which depend on the nanoscopic structural heterogeneity of the gels and the strong but reversible association between ibuprofen and the agarose matrix.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Ibuprofeno/administração & dosagem , Sefarose/química , Resinas Acrílicas/química , Ânions/química , Anti-Inflamatórios não Esteroides/química , Difusão , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ibuprofeno/química , Porosidade
9.
Phys Chem Chem Phys ; 21(2): 772-779, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548037

RESUMO

We investigate via molecular dynamics simulations the behaviour of a polymer melt confined between surfaces with increasing spatial correlation (patchiness) of weakly and strongly interacting sites. Beyond a critical patchiness, we find a dramatic dynamic decoupling, characterized by a steep growth of the longest relaxation time and a constant diffusion coefficient. This arises from dynamic heterogeneities induced by the walls in the adjacent polymer layers, leading to the coexistence of fast and slow chain populations. Structural variations are also present, but they are not easy to detect. Our work opens the way to a better understanding of adhesion, friction, rubber reinforcement by fillers, and many other open issues involving the dynamics of polymeric materials on rough, chemically heterogeneous and possibly "dirty" surfaces.

10.
Phys Chem Chem Phys ; 20(46): 28984-28989, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30457608

RESUMO

Polymorphism and related solid-state phase transitions affect the structure and morphology and hence the properties of materials, but they are not-so-well understood. Atomistic computational methods can provide molecular-level insights, but they have rarely proven successful for transitions between polymorphic forms of crystalline polymers. In this work, we report atomistic molecular dynamics (MD) simulations of poly(3-alkylthiophenes) (P3ATs), widely used organic semiconductors to explore the experimentally observed, entropy-driven transition from form II to more common form I type polymorphs, or, more precisely, to form I mesophases. The transition is followed continuously, also considering X-ray diffraction evidence, for poly(3-hexylthiophene) (P3HT) and poly(3-butylthiophene) (P3BT), evidencing three main steps: (i) loss of side chain interdigitation, (ii) partial disruption of the original stacking order and (iii) reorganization of polymer chains into new, tighter, main-chain stacks and new layers with characteristic form I periodicities, substantially larger than those in the original form II. The described approach, likely applicable to other important transitions in polymers, provides previously inaccessible insight into the structural organization and disorder features of form I structures of P3ATs, not only in their development from form II structures but also from melts or solutions.

11.
J Phys Chem Lett ; 8(20): 5196-5202, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28976762

RESUMO

Knowledge of the ion motion in room temperature ionic liquids (RTILs) is critical for their applications in a number of fields, from lithium batteries to dye-sensitized solar cells. Experiments on a limited number of RTILs have shown that on macroscopic time scales the ions typically undergo conventional, Gaussian diffusion. On shorter time scales, however, non-Gaussian behavior has been observed, similar to supercooled fluids, concentrated colloidal suspensions, and more complex systems. Here we characterize the diffusive motion of ionic liquids based on the N-butyl-N-methylpyrrolidinium (PYR14) cation and bis(trifluoro methanesulfonyl)imide (TFSI) or bis(fluorosulfonyl)imide (FSI) anions. A combination of pulsed gradient spin-echo (PGSE) NMR experiments and molecular dynamics (MD) simulations demonstrates a crossover from subdiffusive behavior to conventional Gaussian diffusion at ∼10 ns. The deconvolution of molecular displacements into a continuous spectrum of diffusivities shows that the short-time behavior is related to the effects of molecular caging. For PYR14FSI, we identify the change of short-range ion-counterion associations as one possible mechanism triggering long-range displacements.

12.
ChemSusChem ; 9(14): 1804-13, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27253620

RESUMO

Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.


Assuntos
Carboximetilcelulose Sódica/química , Fontes de Energia Elétrica , Lítio/química , Difusão , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Soluções
13.
Phys Chem Chem Phys ; 18(26): 17731-9, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27314876

RESUMO

Translocation of small molecules through a cell membrane barrier is a fundamental step to explain the response of cells to foreign molecules. Investigating the mechanisms through which this complex process takes place is especially important in the study of the adverse effects of toxicants. In this work, we start from the results of a previous simulation study of the mechanism of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) absorption into a model membrane, and extend it to four structural congeners of dioxin. The new molecules have been chosen taking into consideration the structural features that characterize dioxin: aromaticity, planarity, the presence of chlorine and oxygen atoms, and hydrophobicity. Our results for the absorption mechanism confirm our expectations based on the chemical structures, but also reveal some interesting differences in single-molecules and especially in cooperative actions underlying cluster absorption. The analysis of key parameters, such as free energies of transfer and translocation times, supports the idea that dioxin, more than its congeners investigated here, likely accumulates in cell membranes.


Assuntos
Membrana Celular , Dioxinas/química , Bifenilos Policlorados/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana , Fenômenos Físicos , Água
14.
Comput Biol Chem ; 61: 145-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878128

RESUMO

Carcinogenicity prediction is an important process that can be performed to cut down experimental costs and save animal lives. The current reliability of the results is however disputed. Here, a blind exercise in carcinogenicity category assessment is performed using augmented top priority fragment classification. The procedure analyses the applicability domain of the dataset, allocates in clusters the compounds using a leading molecular fragment, and a similarity measure. The exercise is applied to three compound datasets derived from the Lois Gold Carcinogenic Database. The results, showing good agreement with experimental data, are compared with published ones. A final discussion on our viewpoint on the possibilities that the carcinogenicity modelling of chemical compounds offers is presented.


Assuntos
Carcinógenos/toxicidade , Testes de Carcinogenicidade , Relação Estrutura-Atividade
15.
Cryst Growth Des ; 16(1): 412-422, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26834509

RESUMO

2,2':6',2″-Ternaphthalene (NNN) is a novel, blue-emitting material, suitable for preparation of organic light-emitting diodes. Its crystal structure has been solved recently, but its thermal behavior and surface properties have not yet been explored, partly due to the difficulty in obtaining high quality crystals. In the present study we use classical molecular dynamics to investigate the thermal behavior of bulk and (001) surfaces of NNN. Our bulk simulations indicate the occurrence of a phase transition at about 600 K. The transition is facilitated by the presence of a free (001) surface, since a reconstruction leading to a very similar structure occurs around 550 K in our surface models. This holds for both ideal and defective surface models, containing a small number of vacancies (one or two missing molecules in the outermost layer). In all cases, the process is triggered by thermal motion and involves the reorientation of the molecules with respect to the (001) plane. Both the bulk and surface phases share the monoclinic space group P21/a with a herringbone disposition of molecules. These findings and their implications for the use of NNN in organic electronics are discussed.

16.
Phys Chem Chem Phys ; 17(4): 2447-56, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25493298

RESUMO

State-of-the-art organic solar cells mostly rely on bulk-heterojunction architectures, where the photoactive layer is cast from a solution containing both the electron donor and acceptor components and subsequently annealed. An alternative route for device preparation is the sequential deposition of the two components using "orthogonal" solvents. The morphology of sequentially deposited bilayers has been extensively studied, but the interplay between optical and electrical properties and its influence on device efficiency is still unclear. Here we present a study of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bilayers with variable P3HT content, including also a standard bulk-heterojunction device for comparison. Measured optical absorption, external quantum efficieny (EQE), and internal quantum efficiency (IQE) data are analysed and interpreted with the aid of numerical models. In agreement with other studies, our results suggest substantial intermixing between the PCBM and P3HT component, regardless of the P3HT content. In the bulk heterojunction and the bilayer devices with an active layer thickness of 100 nm or less, our best fits to both the optical and optoelectronic data highlight a concentration inversion, with an accumulation of PCBM on the anode side. Through the numerical analysis of device performance at short-circuit, we also find that exciton diffusion toward the P3HT:PCBM interface and geminate recombination can be the main IQE loss factors. Additional losses, attributed to bimolecular electron-hole recombination, are also observed upon increasing the P3HT content.

17.
J Chem Theory Comput ; 10(1): 364-72, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26579915

RESUMO

We present a coarse-grained quantum chemical model of organic photovoltaic materials, which is based on the classic idea that the main physical processes involve the electrons occupying the frontier orbitals (HOMO and LUMO) of each molecule or "site". This translates into an effective electronic Hamiltonian with two electrons and two orbitals per site. The on-site parameters (one- and two-electron integrals) can be rigorously related to the ionization energy, electron affinity, and singlet and triplet first excitation energies of that site. The intersite Hamiltonian parameters are introduced in a way that is consistent with classical electrostatics, and for the one-electron part, we use a simple approximation that could be refined using information from atomistic quantum chemical calculations. The model has been implemented within the GAMESS-US package. This allows the exploration of the physics of these materials using state-of-the art quantum chemical methods on relatively large systems (hundreds of electron-donor and electron-acceptor sites). To illustrate this point, we present ground- and excited-state calculations on dimers and two-dimensional arrays of sites using the Hartree-Fock, configuration interaction, and coupled-cluster methods. The calculations provide evidence for the possibility of low-energy, long-range electron transfer in donor-acceptor heterojunctions characterized by a moderate degree of disorder.

18.
J Chem Phys ; 139(2): 024706, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862958

RESUMO

Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.

19.
J Chem Inf Model ; 53(5): 1113-26, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23621653

RESUMO

Theoretical models can be an efficient tool to assess compound toxicity as an alternative to experimental determinations. Their application must follow some requirements that include the possibility of understanding the rationale that supports the prediction; here, the determination of the mode of action (MOA) is important. A combination of similarity and reactivity analysis has been applied to group chemical compounds with the aim at selecting groups that share structure and electronic state. The model is not based on experimental data but only on structural features. The result is a number of groups that contains similar compounds with similar reactivity and, possibly, similar MOA. The comparison of these groups to the experimentally determined MOAs available for the EPAFHAM database permits the discussion of the validity of both the model and the experimental data.


Assuntos
Biologia Computacional/métodos , Testes de Toxicidade/métodos , Análise por Conglomerados , Bases de Dados de Produtos Farmacêuticos , Modelos Moleculares , Conformação Molecular
20.
Chem Commun (Camb) ; 49(40): 4525-7, 2013 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23575977

RESUMO

The first solvent-free crystal structure of PCBM, an organic semiconductor widely used in solvent-free nanocrystalline films in plastic solar cells, is reported and its relevance to structure-property relationships discussed. The PCBM structure, obtained from o-dichlorobenzene solvates by solvent abstraction, was solved using powder diffraction, demonstrating this possibility for functionalized fullerenes.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Energia Solar , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA