Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 68(4): 414-421, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493444

RESUMO

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a higher incidence in men suggesting an influence of sex steroids. Our objective was to investigate past exposure to endogenous and synthetic steroids in female ALS patients and controls. METHODS: We administered a questionnaire to 158 postmenopausal women (75 ALS patients and 83 controls). We calculated reproductive time span (RTS), lifetime endogenous estrogen (LEE) and progesterone exposures (LPE), oral contraceptive pill (OCP) use, and reproductive history. RESULTS: ALS patients showed shorter LEE and LPE, a lower proportion of breast cancer, and 11% showed no history of pregnancies vs. 4% of controls. Odds ratios (ORs) showed that <17 y of LEE and a delayed menarche (>13 y) constitute risk factors for ALS [OR = 2.1 (95% confidence interval {CI}, 1.08-4.2); and OR = 2.4 (95% CI, 1.1-5.1) respectively]. According to Cox survival analysis, for each year the LEE increased over 17 y, it was independently associated with longer survival [hazard ratio (HR) = 0.37 (95% CI, 0.16-0.85)] after adjusting for smoking, age and site of onset. Multivariate regression analysis demonstrated that for each month using OCP for longer than 40 mo increased the risk of ALS [adjusted OR = 4.1 (95% CI, 1.2-13.8)]. DISCUSSION: Thus, longer exposure to endogenous female sex steroids increased survival and reduced ALS susceptibility. In contrast, longer exposure to synthetic sex steroids showed a negative impact by reducing the production of endogenous female sex steroids or due to crossover with other steroid receptors. Given the neuroprotective effects of sex steroids, we suggest that abnormalities of neuroendocrine components may alter motor function in women with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Masculino , Humanos , Feminino , História Reprodutiva , Doenças Neurodegenerativas/complicações , Hormônios Esteroides Gonadais , Prognóstico , Fatores de Risco , Esteroides
2.
Horm Metab Res ; 49(1): 16-22, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27813048

RESUMO

Despite several scientific and technological advances, there is no single neuroprotective treatment that can reverse the brain damage after acute ischemic stroke (AIS). Neuroactive steroids are cholesterol-derived hormones that have the ability to modulate the normal and pathologic nervous system employing genomic and nongenomic mechanisms. In this work, we first investigated if AIS affects the plasma concentration of 5 neuroactive steroids (cortisol, estradiol, progesterone, testosterone, and 3α-androstenediol glucuronide). Second, we studied if levels of circulating steroids associate with neurological, cognitive, and functional outcome in a cohort of 60- to 90 year-old male and female patients with AIS. For this purpose, we recruited patients who were hospitalized at the Emergency Room of the Central Military Hospital within the first 24 h after stroke onset. We designed 2 experimental groups, each one composed of 30 control subjects and 30 AIS patients, both males and females. The assessment of neurological deficit was performed with the NIHSS and the tests used for the functional and cognitive status were: (1) modified Rankin Scale; (2) Photo test, and (3) abbreviated Pfeiffer's mental status questionnaire. We observed a significant difference in plasma concentration of cortisol and estradiol between both experimental groups. In the AIS group, higher levels of these neuroactive steroids were associated with more pronounced neurological, cognitive and functional deficits in women compared to men. We propose that in elderly patients, high levels of circulating neuroactive steroids like cortisol and estradiol could potentiate AIS-mediated neuropathology in the ischemic and penumbra areas.


Assuntos
Androstenodióis/sangue , Isquemia Encefálica/sangue , Cognição/fisiologia , Hormônios Esteroides Gonadais/sangue , Hidrocortisona/sangue , Acidente Vascular Cerebral , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/psicologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurotransmissores/sangue , Prognóstico , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia
3.
Parkinsons Dis ; 2015: 431690, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918669

RESUMO

There is a growing amount of evidence for a neuroprotective role of progesterone and its neuroactive metabolite, allopregnanolone, in animal models of neurodegenerative diseases. By using a model of hemiparkinsonism in male rats, injection of the neurotoxic 6-OHDA in left striatum, we studied progesterone's effects on rotational behavior induced by amphetamine or apomorphine. Also, in order to find potential explanatory mechanisms, we studied expression and activity of nigrostriatal 3α-hydroxysteroid oxidoreductase, the enzyme that catalyzes progesterone to its active metabolite allopregnanolone. Coherently, we tested allopregnanolone for a possible neuromodulatory effect on rotational behavior. Also, since allopregnanolone is known as a GABAA modulator, we finally examined the action of GABAA antagonist bicuculline. We found that progesterone, in addition to an apparent neuroprotective effect, also increased ipsilateral expression and activity of 3α-hydroxysteroid oxidoreductase. It was interesting to note that ipsilateral administration of allopregnanolone reversed a clear sign of motor neurodegeneration, that is, contralateral rotational behavior. A possible GABAA involvement modulated by allopregnanolone was shown by the blocking effect of bicuculline. Our results suggest that early administration of progesterone possibly activates genomic mechanisms that promote neuroprotection subchronically. This, in turn, could be partially mediated by fast, nongenomic, actions of allopregnanolone acting as an acute modulator of GABAergic transmission.

4.
Neurol Res ; 35(7): 719-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23561326

RESUMO

OBJECTIVES: Progesterone has been reported to have a neuroprotective role in depression-like rats in a hemiparkinsonian model of the disease. In this work, we investigate if this hormone affects the three principal neurochemicals striatal systems (dopaminergic, glutamatergic, and GABAergic) that are involved in the physiopathology of the disease in a hemiparkinsonim male rat model at 8 weeks post-chemical injury. METHODS: For this purpose, we design three experimental groups: (1) sham group; (2) hemiparkinsonian group; and (3) hemiparkinsonian group subcutaneously injected with progesterone at 7 days post-chemical injury. Animals were tested in an automated rotational device at 8 weeks post-chemical injury. After behavioral test, K(+)-evoked [(3)H]-dopamine, [(3)H]-glutamate, and [(3)H]-gamma aminobutyric acid release from striatum slices were analyzed by superfusion experiments. RESULTS: The hemiparkinsonian group showed distinctive alterations that are produced by neurodegeneration of left nigrostriatal dopaminergic pathway by 6-hydroxydopamine hydrobromide (6-OHDA). On the other hand, the administration of progesterone 7 days after the injection of the neurotoxin was able to (1) improve the K(+)-evoked [(3)H]-dopamine release from the damaged striata (left); (2) avoid significant increase in the K(+)-evoked [(3)H]-glutamate release from the left striata; and (3) progesterone does not modify the K(+)-evoked [(3)H]-gamma aminobutyric acid release from the left striata. DISCUSSION: These results suggest that progesterone does have neuroprotective and neuromodulatory effects on striatal neurotransmission systems in the hemiparkinsonian male rats. The possible mechanisms would involve genomic and non-genomic actions of this neuroactive steroid which would modulate the activity of dopaminergic, glutamatergic, and GABAergic pathways.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Doença de Parkinson/metabolismo , Progesterona/farmacologia , Ácido gama-Aminobutírico/metabolismo , Anfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Brain Res Bull ; 87(2-3): 280-5, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22155686

RESUMO

In this work we investigated how the neurosteroid allopregnanolone can modulate learning and memory processes. For this purpose, we used ovariectomized (OVX) rats subcutaneously injected with oestradiol benzoate (E) alone or E and progesterone (P). Then, rats were injected in dorsal hippocampus with allopregnanolone or vehicle. Animals were tested in inhibitory avoidance task (IA task). After behavioural test hippocampal mRNA expression and enzymatic activity of 3α-HOR, the enzyme responsible of allopregnanolone synthesis, were analysed. In IA task OVX-EP rats spent less time on platform, compared to those OVX or OVX-E. Regression analyses revealed that there was a significant negative relationship between E-P infusion and performance in this task. Pre-training allopregnanolone administration to OVX-EP rats increased the time spent on the platform. Interestingly, when enzymatic activity of 3α-HOR was tested, OVX-EP rats showed a significant decrease in the enzymatic activity, compared with OVX and OVX-E rats. In addition, OVX-EP group showed a significant increase in the enzymatic activity after intrahippocampal infusion of allopregnanolone. On the other hand, when mRNA expression of 3α-HOR was analysed no differences were observed when the hippocampal allopregnanolone injection was done. These results suggest that E and P have amnesic effects on female rats, being reversed by allopregnanolone through its modulation on hippocampal 3α-HOR activity.


Assuntos
3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Pregnanolona/uso terapêutico , RNA Mensageiro/metabolismo , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Estradiol/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Feminino , Hipocampo/enzimologia , Inibição Psicológica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Atividade Motora/efeitos dos fármacos , Ovariectomia , Progesterona/toxicidade , Ratos , Ratos Sprague-Dawley
6.
Peptides ; 32(11): 2367-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21820473

RESUMO

Ghrelin (Ghr) is a peptide produced peripherally and centrally. It participates in the modulation of different biological processes. In our laboratory we have shown that (a) Ghr administration, either intracerebroventricular or directly into the hippocampus enhanced memory consolidation in a step down test in rats (b) the effect of Ghr upon memory decreases in animals pretreated with a serotonin (5-HT) reuptake inhibitor, Fluoxetine, suggesting that Ghr effects in the hippocampus could be related to the availability of 5-HT. It has been demonstrated that Ghr inhibits 5-HT release from rat hypothalamic synaptosomes. Taking in mint these evidences, we studied the release of radioactive 5-HT to the superfusion medium from hippocampal slices treated with two doses of Ghr (0.3 and 3 nm/µl). Ghr inhibited significantly the 5-HT release in relation to those superfused with artificial cerebrospinal fluid (ACSF) (H = 9.48, df = 2, p ≤ 0.05). In another set of experiments, Ghr was infused into the CA1 area of hippocampus of the rats immediately after training in the step down test and the 5-HT release from slices was studied 24h after Ghr injection showing that in this condition also the 5-HT release was inhibited (H = 11.72, df = 1, p ≤ 0.05). In conclusion, results provide additional evidence about the neurobiological bases of Ghr action in hippocampus.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Fluoxetina/farmacologia , Grelina , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Fluoxetina/efeitos adversos , Grelina/administração & dosagem , Grelina/uso terapêutico , Hipocampo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Memória/fisiologia , Microtomia , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Trítio/análise
7.
Pharmacol Biochem Behav ; 99(4): 614-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21689676

RESUMO

Hemiparkinsonism induced by 6-hydroxydopamine (6-OHDA) injected in left corpus striatum is a recognized model of motor deficits in rats. Some reports concerning motor deficits indicate a favorable response to steroid administration in hemiparkinsonian animals. However, there is no much information regarding progesterone administration in relation to cognitive and affective dysfunctions. Here we could confirm earlier reports regarding a mild deficit of memory and a noticeable depressive-like behavior 4 weeks after injecting 6-OHDA. We also present some evidence that progesterone could be - when administered 7 days after the injection of 6-OHDA - a possible neuroprotector concerning both motor deficits as well as cognitive - memory- and depression-like behaviors. The affective deficit was reverted by administering the tricyclic antidepressant imipramine. Since Parkinson's disease is a conspicuous cause of psycho-organic decline in human beings, it would be important to be able of dealing early with non-motor indicators in order to use prospective neuroprotectors to prevent the progression of the disease.


Assuntos
Antidepressivos , Depressão/etiologia , Depressão/prevenção & controle , Oxidopamina , Doença de Parkinson Secundária/complicações , Progesterona/farmacologia , Simpatolíticos , Anfetamina/farmacologia , Animais , Apomorfina/farmacologia , Sinais (Psicologia) , Depressão/psicologia , Agonistas de Dopamina/farmacologia , Masculino , Memória/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/psicologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA