Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 63(1): 81-91, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19607794

RESUMO

We recently reported a cell death cascade whereby cellular stressors activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The nuclear GAPDH/Siah complex augments p300/CBP-associated acetylation of nuclear proteins, including p53, which mediate cell death. We report a 52 kDa cytosolic protein, GOSPEL, which physiologically binds GAPDH, in competition with Siah, retaining GAPDH in the cytosol and preventing its nuclear translocation. GOSPEL is neuroprotective, as its overexpression prevents NMDA-glutamate excitotoxicity while its depletion enhances death in primary neuron cultures. S-nitrosylation of GOSPEL at cysteine 47 enhances GAPDH-GOSPEL binding and the neuroprotective actions of GOSPEL. In intact mice, virally delivered GOSPEL selectively diminishes NMDA neurotoxicity. Thus, GOSPEL may physiologically regulate the viability of neurons and other cells.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Intoxicação por MPTP/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/uso terapêutico , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Encéfalo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Knockout , Peso Molecular , Mutação , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/deficiência , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , S-Nitrosoglutationa/farmacologia , Transfecção/métodos , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Cell Biol ; 10(7): 866-73, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18552833

RESUMO

Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH-Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH-Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.


Assuntos
Apoptose/fisiologia , Núcleo Celular/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Linhagem Celular , Ativação Enzimática , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/genética
3.
Hum Mol Genet ; 15(22): 3313-23, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17035248

RESUMO

Disrupted-In-Schizophrenia-1 (DISC1) is a unique susceptibility gene for major mental conditions, because of the segregation of its genetic variant with hereditary psychosis in a Scottish pedigree. Genetic association studies reproducibly suggest involvement of DISC1 in both schizophrenia and bipolar disorder in several ethnic groups. The DISC1 protein is multifunctional, and a pool of DISC1 in the dynein motor complex is required for neurite outgrowth in PC12 cells as well as proper neuronal migration and dendritic arborization in the developing cerebral cortex in vivo. Here, we show that a specific interaction between DISC1 and nuclear distribution element-like (NDEL1/NUDEL) is required for neurite outgrowth in differentiating PC12 cells. Among several components of the dynein motor complex, DISC1 and NDEL1 are selectively upregulated during neurite outgrowth upon differentiation in PC12 cells. The NDEL1 binding site of DISC1 was narrowed down to a small portion of exon 13, corresponding to amino acids 802-835 of DISC1. We demonstrate that genetic variants of DISC1, proximal to the NDEL1 binding site, affect the interaction between DISC1 and NDEL1.


Assuntos
Proteínas de Transporte/metabolismo , Variação Genética/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Animais , Proteínas de Transporte/genética , Éxons/genética , Humanos , Proteínas do Tecido Nervoso/genética , Neuritos/metabolismo , Ligação Proteica , Splicing de RNA/genética , Ratos , Serina/genética , Serina/metabolismo
4.
Biochim Biophys Acta ; 1762(5): 502-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16574384

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a classic glycolytic enzyme, and accumulating evidence has suggested that GAPDH is a multi-functional protein. In particular, its role as a mediator for cell death has been highlighted. For the last decade, many groups reported that a pool of GAPDH translocates to the nucleus under a variety of stressors, most of which are associated with oxidative stress. At the molecular level, sequential steps lead to nuclear translocation of GAPDH during cell death as follows: first, a catalytic cysteine in GAPDH (C150 in rat GAPDH) is S-nitrosylated by nitric oxide (NO) that is generated from inducible nitric oxide synthase (iNOS) and/or neuronal NOS (nNOS); second, the modified GAPDH becomes capable of binding with Siah1, an E3 ubiquitin ligase, and stabilizes it; third, the GAPDH-Siah protein complex translocates to the nucleus, dependent on Siah1's nuclear localization signal, and degrades Siah1's substrates in the nucleus, which results in cytotoxicity. A recent report suggests that GAPDH may be genetically associated with late-onset of Alzheimer's disease. (-)-deprenyl, which has originally been used as a monoamine oxidase inhibitor for Parkinson's disease, binds to GAPDH and displays neuroprotective actions, but its molecular mechanism is still unclear. The NO/GAPDH/Siah1 death cascade will contribute to the molecular understanding of a role of GAPDH in neurodegenerative disorders and help to establish novel therapeutic strategies.


Assuntos
Apoptose , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Degeneração Neural , Óxido Nítrico/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Humanos , Proteínas Nucleares/metabolismo
5.
Proc Natl Acad Sci U S A ; 103(10): 3887-9, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505364

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where degradation of Siah targets elicits cell death. R-(-)-Deprenyl (deprenyl) ameliorates the progression of disability in early Parkinson's disease and also has neuroprotective actions. We show that deprenyl and a related agent, TCH346, in subnanomolar concentrations, prevent S-nitrosylation of GAPDH, the binding of GAPDH to Siah, and nuclear translocation of GAPDH. In mice treated with the dopamine neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), low doses of deprenyl prevent binding of GAPDH and Siah1 in the dopamine-enriched corpus striatum.


Assuntos
Apoptose/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Antiparkinsonianos/farmacologia , Apoptose/fisiologia , Linhagem Celular , Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Humanos , Técnicas In Vitro , Intoxicação por MPTP/patologia , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Óxido Nítrico/metabolismo , Proteínas Nucleares/fisiologia , Oxepinas/farmacologia , Doença de Parkinson/tratamento farmacológico , Selegilina/farmacologia , Ubiquitina-Proteína Ligases/fisiologia
6.
Proc Natl Acad Sci U S A ; 103(9): 3405-9, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16492755

RESUMO

The pathophysiology of Huntington's disease reflects actions of mutant Huntingtin (Htt) (mHtt) protein with polyglutamine repeats, whose N-terminal fragment translocates to the nucleus to elicit neurotoxicity. We establish that the nuclear translocation and associated cytotoxicity of mHtt reflect a ternary complex of mHtt with GAPDH and Siah1, a ubiquitin-E3-ligase. Overexpression of GAPDH or Siah1 enhances nuclear translocation of mHtt and cytotoxicity, whereas GAPDH mutants that cannot bind Siah1 prevent translocation. Depletion of GAPDH or Siah1 by RNA interference diminishes nuclear translocation of mHtt.


Assuntos
Núcleo Celular/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Doença de Huntington
7.
Nat Cell Biol ; 7(7): 665-74, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951807

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH-Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO-S-nitrosylation-GAPDH-Siah1 cascade may represent an important molecular mechanism of cytotoxicity.


Assuntos
Apoptose/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/fisiologia , Proteínas Nucleares/metabolismo , S-Nitrosotióis/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Cisteína/metabolismo , Citoplasma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Mutação , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Proteínas Nucleares/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , S-Nitrosoglutationa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
8.
Neurobiol Dis ; 20(2): 267-74, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15890517

RESUMO

Accumulation of mutant Huntingtin (Htt), especially the N-terminal-cleaved Htt, participates in the pathophysiology of Huntington's disease (HD). It is difficult to elucidate temporal properties of the translocation of "endogenous" Htt using autopsy HD patient brains. Thus, we examined the cell biology of "endogenous" Htt cleavage and nuclear translocation in cultured lymphoblasts of HD patients and controls. Apoptotic stimulation of lymphoblasts elicits caspase-dependent cleavage and selective nuclear translocation of N-terminal portions of Htt. Discrete clusters of the N-terminal Htt accumulate at unique perinuclear sites prior to nuclear translocation. Our findings suggest that caspase cleavage of Htt is cytoplasmic and precedes sorting to specific perinuclear sites followed by nuclear translocation in HD patient tissue.


Assuntos
Caspases/metabolismo , Núcleo Celular/metabolismo , Doença de Huntington/metabolismo , Linfócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Apoptose/fisiologia , Células Cultivadas , Citoplasma/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Linfócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Células-Tronco/ultraestrutura
9.
Inhal Toxicol ; 15(7): 675-85, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12754689

RESUMO

Characterization of lung injury is important if timely therapeutic intervention is to be used properly and successfully. In this study, lung injury was defined as the progressive formation of pulmonary edema. Our model gas was phosgene, a pulmonary edemagenic compound. Phosgene, widely used in industry, can produce life-threatening pulmonary edema within hours of exposure. Four groups of 40 CD-1 male mice were exposed whole-body to either air or a concentration x time (c x t) amount of 32-42 mg/m(3) (8-11 ppm) phosgene for 20 min (640-840 mg x min/m(3)). Groups of air- or phosgene-exposed mice were euthanized 1, 4, 8, 12, 24, 48, or 72 h or 7 days postexposure. The trachea was excised, and 800 micro l saline was instilled into the lungs and washed back and forth 5 times to collect bronchoalveolar lavage fluid (BALF). The antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), total glutathione (GSH), and protein were determined at each time point. Phosgene exposure significantly enhanced both GPx and GR in phosgene-exposed mice compared with air-exposed mice from 4 to 72 h, p < or = 0.01 and p < or = 0.005, respectively. BALF GSH was also significantly increased, p < or = 0.01, from 4 to 24 h after exposure, in comparison with air-exposed. BALF protein, an indicator of air/blood barrier integrity, was significantly higher than in air-exposed mice 4 h to 7 days after exposure. In contrast, BALF SOD was reduced by phosgene exposure from 4 to 24 h, p < or = 0.01, versus air-exposed mice. Except for protein, all parameters returned to control levels by 7 days postexposure. These data indicate that the lung has the capacity to repair itself within 24-48 h after exposure by reestablishing a functional GSH redox system despite increased protein leakage. SOD reduction during increased leakage may indicate that barrier integrity is affected by superoxide anion production.


Assuntos
Líquido da Lavagem Broncoalveolar , Enzimas/análise , Síndrome do Desconforto Respiratório/enzimologia , Animais , Modelos Animais de Doenças , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Masculino , Camundongos , Camundongos Endogâmicos , Fosgênio , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/induzido quimicamente , Superóxido Dismutase/análise
10.
Toxicol Pathol ; 30(3): 339-49, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12051551

RESUMO

Phosgene (CG) is a highly irritant gas widely used industrially as a chemical intermediate for the production of dyes, pesticides, and plastics, and can cause life-threatening pulmonary edema within 24 hours of exposure. This study was designed to investigate acute changes in lung tissue histopathology and selected bronchoalveolar lavage fluid (BALF) factors over time to determine early diagnostic indicators of exposure. Three groups of 40 male mice each were exposed to 32 mg/m3 (8 ppm) CG for 20 minutes, and 3 groups of 40 control male mice were exposed to filtered room air for 20 minutes, both exposures were followed by room air washout for 5 minutes. At 1, 4.8, 12, 24, 48, and 72 hours after exposure each group of mice was euthanized and processed for histopathology, bronchoalveolar lavage or gravimetric measurements, respectively. Over time, the histopathological lesions were characterized by acute changes consisting of alveolar and interstitial edema, fibrin and hemorrhage, followed by significant alveolar and interstitial flooding with inflammatory cell infiltrates and scattered bronchiolar and terminal airway epithelial degeneration and necrosis. From 48 to 72 hours, there was partial resolution of the edema and degenerative changes, followed by epithelial and fibroblastic regeneration centered on the terminal bronchiolar areas. Bronchoalveolar lavage was processed for cell differential counts, LDH, and protein determination. Comparative analysis revealed significant increases in both postexposure lung wet/dry weight ratios, and early elevations of BALF LDH and protein, and later elevations in leukocytes. This article describes the use of histopathology to chronicle the temporal pulmonary changes subsequent to whole body exposure to phosgene, and correlate these changes with BALF ingredients and postexposure lung wet weights in an effort to characterize toxic gas-induced acute lung injury and identify early markers of phosgene exposure.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Substâncias para a Guerra Química/toxicidade , Pulmão/patologia , Fosgênio/toxicidade , Doença Aguda , Animais , Células Sanguíneas/citologia , L-Lactato Desidrogenase/química , Masculino , Camundongos , Proteínas/química , Edema Pulmonar/induzido quimicamente
11.
Inhal Toxicol ; 14(5): 487-501, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12028804

RESUMO

One hallmark of phosgene inhalation toxicity is the latent formation of life-threatening, noncardiogenic pulmonary edema. The purpose of this study was to investigate the effect of phosgene inhalation on respiratory dynamics over 12 h. CD-1 male mice, 25-30 g, were exposed to 32 mg/m(3) (8 ppm) phosgene for 20 min (640 mg min/m(3)) followed by a 5-min air washout. A similar group of mice was exposed to room air for 25 min. After exposure, conscious mice were placed unrestrained in a whole-body plethysmograph to determine breathing frequency (f), inspiration (Ti) and expiration (Te) times, tidal volume (TV), minute ventilation (MV), end inspiratory pause (EIP), end expiratory (EEP) pause, peak inspiratory flows (PIF), peak expiratory flows (PEF), and a measure of bronchoconstriction (Penh). All parameters were evaluated every 15 min for 12 h. Bronchoalveolar lavage fluid (BALF) protein concentration and lung wet/dry weight ratios (W/D) were also determined at 1, 4, 8, and 12 h. A treatment x time repeated-measures two-way analysis of variance (ANOVA) revealed significant differences between air and phosgene for EEP, EIP, PEF, PIF, TV, and MV, p < or =.05, across 12 h. Phosgene-exposed mice had a significantly longer mean Ti, p < or =.05, compared with air-exposed mice over time. Mice exposed to phosgene showed marked increases (approximately double) in Penh across all time points, beginning at 5 h, when compared with air-exposed mice, p < or =.05. BALF protein, an indicator of air/blood barrier integrity, and W/D were significantly higher, 10- to 12-fold, in phosgene-exposed than in air-exposed mice 4-12 h after exposure, p

Assuntos
Broncoconstrição/efeitos dos fármacos , Substâncias para a Guerra Química/efeitos adversos , Exposição por Inalação , Fosgênio/efeitos adversos , Edema Pulmonar/induzido quimicamente , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Masculino , Camundongos , Fosgênio/administração & dosagem , Edema Pulmonar/fisiopatologia , Respiração/efeitos dos fármacos , Testes de Função Respiratória/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA