Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 28(8): 376-384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625785

RESUMO

DHX9 is a DExH-box RNA helicase that utilizes hydrolysis of all four nucleotide triphosphates (NTPs) to power cycles of 3' to 5' directional movement to resolve and/or unwind double stranded RNA, DNA, and RNA/DNA hybrids, R-loops, triplex-DNA and G-quadraplexes. DHX9 activity is important for both viral amplification and maintaining genomic stability in cancer cells; therefore, it is a therapeutic target of interest for drug discovery efforts. Biochemical assays measuring ATP hydrolysis and oligonucleotide unwinding for DHX9 have been developed and characterized, and these assays can support high-throughput compound screening efforts under balanced conditions. Assay development efforts revealed DHX9 can use double stranded RNA with 18-mer poly(U) 3' overhangs and as well as significantly shorter overhangs at the 5' or 3' end as substrates. The enzymatic assays are augmented by a robust SPR assay for compound validation. A mechanism-derived inhibitor, GTPγS, was characterized as part of the validation of these assays and a crystal structure of GDP bound to cat DHX9 has been solved. In addition to enabling drug discovery efforts for DHX9, these assays may be extrapolated to other RNA helicases providing a valuable toolkit for this important target class.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , DNA/química , RNA de Cadeia Dupla , Humanos , Animais , Gatos , Cristalografia
2.
SLAS Discov ; 25(4): 361-371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585521

RESUMO

A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA processing, stability, and translation. Methylation of adenosine at the N6 position (m6A) in messenger RNA (mRNA) is currently the most well-studied RNA modification and is catalyzed by the RNA methyltransferase complex METTL3/METTL14. Once generated, m6A can modulate mRNA splicing, export, localization, degradation, and translation. Although potent and selective inhibitors exist for several members of the Type I S-adenosylmethionine (SAM)-dependent methyltransferase family, no inhibitors have been reported for METTL3/METTL14 to date. To facilitate drug discovery efforts, a sensitive and robust mass spectrometry-based assay for METTL3/METTL14 using self-assembled monolayer desorption/ionization (SAMDI) technology has been developed. The assay uses an 11-nucleotide single-stranded RNA compared to a previously reported 27-nucleotide substrate. IC50 values of mechanism-based inhibitors S-adenosylhomocysteine (SAH) and sinefungin (SFG) are comparable between the SAMDI and radiometric assays that use the same substrate. This work demonstrates that SAMDI technology is amenable to RNA substrates and can be used for high-throughput screening and compound characterization for RNA-modifying enzymes.


Assuntos
Espectrometria de Massas/métodos , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/farmacologia , Descoberta de Drogas/tendências , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , S-Adenosil-Homocisteína/farmacologia
3.
Nat Commun ; 6: 7645, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134520

RESUMO

SIRT1, the founding member of the mammalian family of seven NAD(+)-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.


Assuntos
Lisina/metabolismo , Sirtuína 1/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Medição da Troca de Deutério , Escherichia coli , Vetores Genéticos , Humanos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transfecção
4.
Science ; 339(6124): 1216-9, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23471411

RESUMO

A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.


Assuntos
Sirtuína 1/química , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células Cultivadas , Ativação Enzimática , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Ácido Glutâmico/química , Ácido Glutâmico/genética , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Estrutura Terciária de Proteína , Resveratrol , Sirtuína 1/genética , Estilbenos/química , Especificidade por Substrato
5.
J Biol Chem ; 285(43): 32695-32703, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20702418

RESUMO

SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340-8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.


Assuntos
Ativadores de Enzimas/química , Peptídeos/química , Sirtuína 1/química , Ativação Enzimática , Humanos , Especificidade por Substrato
6.
New J Chem ; 2010(34): 611-616, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20526382

RESUMO

A strategy for preparing high relaxivity, metabolically stable peptide-based MR contrast agents is described.

7.
Bioorg Med Chem Lett ; 19(21): 6122-6, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19783434

RESUMO

A structure-activity relationship study for a 2-chloroanilide derivative of pyrazolo[1,5-a]pyridine revealed that increased EphB3 kinase inhibitory activity could be accomplished by retaining the 2-chloroanilide and introducing a phenyl or small electron donating substituents to the 5-position of the pyrazolo[1,5-a]pyridine. In addition, replacement of the pyrazolo[1,5-a]pyridine with imidazo[1,2-a]pyridine was well tolerated and resulted in enhanced mouse liver microsome stability. The structure-activity relationship for EphB3 inhibition of both heterocyclic series was similar. Kinase inhibitory activity was also demonstrated for representative analogs in cell culture. An analog (32, LDN-211904) was also profiled for inhibitory activity against a panel of 288 kinases and found to be quite selective for tyrosine kinases. Overall, these studies provide useful molecular probes for examining the in vitro, cellular and potentially in vivo kinase-dependent function of EphB3 receptor.


Assuntos
Imidazóis/química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Piridinas/química , Receptor EphB3/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Imidazóis/síntese química , Imidazóis/farmacologia , Camundongos , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Receptor EphB3/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 17(13): 3729-32, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17449248

RESUMO

3-Amino-2-keto-7H-thieno[2,3-b]pyridin-6-one derivatives were discovered as moderately potent inhibitors of ubiquitin C-terminal hydrolase-L1 (UCH-L1) utilizing an assay that measures hydrolysis of the fluorogenic substrate Ub-AMC. SAR studies revealed that both the carboxylate at the 5-position and the 6-pyridone ring were critical for inhibitory activity. Furthermore, activity was dependent on the nature of the ketone substituent at the 2-position, with 4-Me-Ph and 2-naphthyl being best. Kinetic mechanism studies revealed that these compounds were uncompetitive inhibitors of UCH-L1, binding only to the Michaelis-complex and not to free enzyme. The active compounds were selective for UCH-L1, exhibiting neither inhibition of other cysteine hydrolases (e.g., UCH-L3, papain, isopeptidase T, caspase-3, and tissue transglutaminase) nor cytotoxicity in N2A cells.


Assuntos
Química Farmacêutica/métodos , Inibidores Enzimáticos/síntese química , Ubiquitina Tiolesterase/antagonistas & inibidores , Linhagem Celular Tumoral , Cisteína/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Cetonas/química , Cinética , Modelos Químicos , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina Tiolesterase/química
9.
Biochemistry ; 46(4): 1106-15, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240993

RESUMO

Tissue transglutaminase (TGase) is a Ca2+-dependent enzyme that catalyzes cross-linking of intracellular proteins through a mechanism that involves isopeptide bond formation between Gln and Lys residues and is allosterically regulated by GTP. TGase is thought to play a pathogenic role in neurodegenerative diseases by promoting aggregation of disease-specific proteins that accumulate as part of these disorders. Given the role that TGase plays in neurodegenerative disorders, we initiated a research program to discover inhibitors of this enzyme that might ultimately be developed into therapeutic agents. To identify such inhibitors, we screened 110,000 druglike compounds for their ability to inhibit TGase [Case, A., et al. (2005) Anal. Biochem. 338, 237-244]. In this paper, we report the kinetics of interaction of human TGase with one of the inhibitors that we identified, LDN-27219. We found that this compound is a reversible, slow-binding inhibitor that appears not to bind at the enzyme's active site but rather at the enzyme's GTP site, or a site that regulates binding of GTP. Interestingly, the potency and kinetics of inhibition are dependent on substrate structure and suggest a novel mechanism of inhibition that involves differential binding of LDN-27219 to multiple conformational states of this enzyme.


Assuntos
Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo , Animais , Sítios de Ligação , Cálcio/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Trifosfato/farmacologia , Cobaias , Humanos , Técnicas In Vitro , Cinética , Modelos Biológicos , Transglutaminases/química
10.
Biochemistry ; 45(7): 2443-52, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16475834

RESUMO

Ubiquitin C-terminal hydrolases (UCHs) cleave Ub-X bonds (Ub is ubiquitin and X an alcohol, an amine, or a protein) through a thioester intermediate that is produced by nucleophilic attack of the Cys residue of a Cys-SH/His-Im catalytic diad. We are studying the mechanism of UCH-L1, a UCH that is implicated in Parkinson's disease, and now wish to report our initial findings. (i) Pre-steady-state kinetic studies for UCH-L1-catalyzed hydrolysis of Ub-AMC (AMC, 7-amido-4-methylcoumarin) indicate that k(cat) is rate-limited by acyl-enzyme formation. Thus, K(m) = K(s), the dissociation constant for the Michaelis complex, and k(cat) = k(2), the rate constant for acyl-enzyme formation. (ii) For K(assoc) (=K(s)(-)(1)), DeltaC(p) = -0.8 kcal mol(-)(1) deg(-)(1) and is consistent with coupling between substrate association and a conformational change of the enzyme. For k(2), DeltaS(++) = 0 and suggests that in the E-S, substrate and active site residues are precisely aligned for reaction. (iii) Solvent isotope effects are (D)K(assoc) = 0.5 and (D)k(2) = 0.9, suggesting that the substrate binds to a form of free enzyme in which the active site Cys exists as the thiol. In the resultant Michaelis complex, the diad has tautomerized to ion pair Cys-S(-)/His-ImH(+). Subsequent attack of thiolate produces the acyl-enzyme species. In contrast, isotope effects for association of UCH-L1 with transition-state analogue ubiquitin aldehyde suggest that an alternative mechanistic pathway can sometimes be available to UCH-L1 involving general base-catalyzed attack of Cys-SH by His-Im.


Assuntos
Ubiquitina Tiolesterase/metabolismo , Acilação , Cumarínicos/metabolismo , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Cinética , Modelos Químicos , Cloreto de Sódio/farmacologia , Temperatura , Termodinâmica , Ubiquitina/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitinas/metabolismo
11.
Bioorg Med Chem Lett ; 15(7): 1885-9, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15780627

RESUMO

Thieno[2,3-d]pyrimidin-4-one acylhydrazide derivatives were discovered as moderately potent inhibitors of TGase 2 (tissue transglutaminase) utilizing a fluorescence-based assay that measured TGase 2 catalyzed incorporation of the dansylated Lys derivative alpha-N-Boc-Lys-CH(2)-CH(2)-dansyl into the protein substrate N,N-dimethylated-casein. A SAR study revealed that the acylhydrazide thioether side-chain and the thiophene ring were critical to inhibitory activity.


Assuntos
Inibidores Enzimáticos/síntese química , Hidrazinas/síntese química , Sulfetos/química , Tiofenos/química , Tiofenos/síntese química , Transglutaminases/antagonistas & inibidores , Sítios de Ligação , Caseínas/farmacologia , Catálise , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Concentração Inibidora 50 , Peptídeos/química , Relação Estrutura-Atividade , Especificidade por Substrato , Tiofenos/farmacologia
12.
Anal Biochem ; 338(2): 237-44, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15745743

RESUMO

Tissue transglutaminase (TGase) is a Ca(2+)-dependent enzyme that catalyzes cross-linking of intracellular proteins through a mechanism that involves isopeptide bond formation between Gln and Lys residues. In addition to its transamidation activity, TGase can bind guanosine 5'-triphosphate (GTP) and does so in a manner that is antagonized by calcium. Once bound, GTP undergoes hydrolysis to form guanosine 5'-diphosphate and inorganic phosphate. TGase is thought to play a pathogenic role in neurodegenerative diseases by promoting aggregation of disease-specific proteins that accumulate in these disorders. Thus, this enzyme represents a viable target for drug discovery. We now report the development of a mechanism-based assay for TGase and the results of a screen using this assay in which we tested 56,500 drug-like molecules for their ability to inhibit TGase. In this assay, the Gln- and Lys-donating substrates are N,N-dimethylated casein (NMC) and N-Boc-Lys-NH-CH(2)-CH(2)-NH-dansyl (KXD), respectively. Through a combination of steady state kinetic experiments and reaction progress curve simulations, we were able to calculate values for the initial concentrations of NMC, KXD, and Ca(2+) that would produce a steady state situation in which all thermodynamically significant forms of substrate-bound TGase exist in equal concentration. Under these conditions, the assay is sensitive to both competitive and mixed active-site inhibitors and to inhibitors that bind to the GTP site. The assay was optimized for automated screening in 384-well format and was then used to test our compound library. From among these compounds, 104 authentic hits that represent several mechanistic classes were identified.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Caseínas/química , Compostos de Dansil/química , Lisina/análogos & derivados , Lisina/química , Proteína 2 Glutamina gama-Glutamiltransferase
13.
Chem Biol ; 10(9): 837-46, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14522054

RESUMO

Neuronal ubiquitin C-terminal hydrolase (UCH-L1) has been linked to Parkinson's disease (PD), the progression of certain nonneuronal tumors, and neuropathic pain. Certain lung tumor-derived cell lines express UCH-L1 but it is not expressed in normal lung tissue, suggesting that this enzyme plays a role in tumor progression, either as a trigger or as a response. Small-molecule inhibitors of UCH-L1 would be helpful in distinguishing between these scenarios. By utilizing high-throughput screening (HTS) to find inhibitors and traditional medicinal chemistry to optimize their affinity and specificity, we have identified a class of isatin O-acyl oximes that selectively inhibit UCH-L1 as compared to its systemic isoform, UCH-L3. Three representatives of this class (30, 50, 51) have IC(50) values of 0.80-0.94 micro M for UCH-L1 and 17-25 micro M for UCH-L3. The K(i) of 30 toward UCH-L1 is 0.40 micro M and inhibition is reversible, competitive, and active site directed. Two isatin oxime inhibitors increased proliferation of the H1299 lung tumor cell line but had no effect on a lung tumor line that does not express UCH-L1. Inhibition of UCH-L1 expression in the H1299 cell line using RNAi had a similar proproliferative effect, suggesting that the UCH-L1 enzymatic activity is antiproliferative and that UCH-L1 expression may be a response to tumor growth. The molecular mechanism of this response remains to be determined.


Assuntos
Antineoplásicos/farmacologia , Isatina/farmacologia , Neoplasias Pulmonares/patologia , Oximas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Antineoplásicos/química , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Isatina/química , Isoenzimas/antagonistas & inibidores , Oximas/química , Relação Estrutura-Atividade
14.
Biochemistry ; 42(31): 9466-81, 2003 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12899634

RESUMO

Tissue transglutaminase (TGase) catalyzes transfer of gamma-acyl moieties of Gln residues in peptides or protein substrates to either water or amine nucleophiles through an acyl-enzyme intermediate formed from initial acyl-transfer to an active site Cys residue. Natural substrates for this enzyme include proteins (e.g., tau, alpha-synuclein, and huntingtin) whose TGase-promoted polymerization may be causative in neurodegenerative diseases. As part of a program to find inhibitors of TGase, we have undertaken kinetic and mechanistic studies of the enzyme from guinea pig (gpTGase) and humans (hTGase). Key findings of this study include: (i) gpTGase-catalyzed transamidation of Z-Gln-Gly by Gly-OMe proceeds essentially as described above but with the involvement of substrate inhibition by Gly-OMe. This phenomena, resulting from the binding of nucleophile to free enzyme, appears to be a common feature of TGase-catalyzed reactions. (ii) Solvent deuterium isotope effects for hydrolysis of Z-Gln-Gly by gpTGase are (D)(k(c)/K(m)) = 0.45 and (D)k(c) = 3.6. While the latter results from general catalysis of deacylation, the former originates purely from the reactant state, hydrogen fractionation factor of the active site thiol with no involvement of general catalysis of acylation. (iii) Studies of the transamidation of N,N-dimethylated casein by Gly-OMe and dansyl-cadaverine suggest a complex kinetic mechanism for both enzymes that reflects contributions from four reactions: Gln hydrolysis, intramolecular transpeptidation, intermolecular transpeptidation, and transamidation by added nucleophile.


Assuntos
Aminas/química , Cinética , Fígado/enzimologia , Fragmentos de Peptídeos/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Acilação , Animais , Sítios de Ligação , Catálise , Compostos Cromogênicos/síntese química , Deutério/química , Glutamina/química , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Computação Matemática , Modelos Químicos , Fragmentos de Peptídeos/química , Especificidade por Substrato
15.
Biochemistry ; 42(16): 4727-32, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12705836

RESUMO

Investigating the selectivity that an enzyme expresses toward its substrates can be technically challenging if reaction of these substrates is not accompanied by a conveniently monitored change in some physicochemical property. In this paper, we describe a simple method for determining steady-state kinetic parameters for enzymatic turnover of such "silent" substrates. According to this method, silent substrate S is allowed to compete for enzymic reaction with signal-generating substrate S*, whose conversion to product can be conveniently monitored. Full reaction progress curves are collected under conditions of [S*](o) << K(m)* and [S](o) >or= 3K(m). Progress curves collected under these conditions are characterized by an initial lag phase of duration tau that is followed by the pseudo-first-order reaction of S. Steady-state kinetic parameters for the silent substrate can be obtained by one of two methods. One method combines least-squares fitting with numerical integration of appropriate rate equations to analyze the progress curves, while the other method relies on direct graphical analysis in which K(m) is the value of [S](o) that reduces the control velocity by a factor of 2 and V(max) is shown to simply equal the ratio [S](o)/tau. We use these methods to analyze the alpha-chymotrypsin-catalyzed hydrolysis of silent substrate Suc-Ala-Phe-AlaNH(2) with signal generator Suc-Ala-Phe-pNA. From the curve-fitting method, k(c) = 0.9 +/- 0.2 s(-1) and K(m) = 0.4 +/- 0.1 mM, while by direct graphical analysis, k(c) = 1.1 +/- 0.1 s(-1) and K(m) = 0.51 +/- 0.03 mM. As validation of this new method, we show agreement of these values with those determined independently by HPLC analysis of the hydrolysis of Suc-Ala-Phe-AlaNH(2) by alpha-CT, where k(c) = 1.1 +/- 0.1 s(-1) and K(m) = 0.5 +/- 0.1 mM.


Assuntos
Quimotripsina/metabolismo , Modelos Químicos , Cromatografia Líquida de Alta Pressão , Hidrólise , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Especificidade por Substrato
16.
Biochemistry ; 42(11): 3335-48, 2003 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-12641466

RESUMO

Serine proteases catalyze the hydrolysis of amide bonds of their protein and peptide substrates through a mechanism involving the intermediacy of an acyl-enzyme. While the rate constant for formation of this intermediate, k(2), shows a dramatic dependence on peptide chain length, the rate constant for the intermediate's hydrolysis is relatively insensitive to chain length. To probe the mechanistic origins of this phenomenon, we determined temperature dependencies and solvent isotope effects for the alpha-chymotrypsin-catalyzed hydrolysis of Suc-Phe-pNA (K(s) = 1 mM, k(2) = 0.04 s(-)(1), and k(3) = 11 s(-)(1)), Suc-Ala-Phe-pNA (K(s) = 4 mM, k(2) = 0.9 s(-)(1), and k(3) = 42 s(-)(1)), and Suc-Ala-Ala-Pro-Phe-pNA (K(s) = 0.1 mM, k(2) = 98 s(-)(1), and k(3) = 71 s(-)(1)). We found that while the van't Hoff plots for K(s) and the Eyring plots for k(3) are linear for all three reactions, the Eyring plots for k(2) are convex, indicating that the process governed by k(2) is complex, possibly involving a coupling between active site chemistry and protein conformational isomerization. This interpretation is strengthened by solvent isotope effects on k(2) that are largely temperature-independent. Furthermore, the dependence of k(2) on peptide length is manifested entirely in the enthalpy of activation, suggesting a mechanism of catalysis by distortion. Taken together, this analysis of acylation suggests that extended substrates which can engage in subsite interactions are able to efficiently trigger the coupling mechanism between chemistry and a conformational isomerization that distorts the substrate and thereby promotes nucleophilic attack.


Assuntos
Serina Endopeptidases/metabolismo , Catálise , Quimotripsina/metabolismo , Concentração de Íons de Hidrogênio , Isótopos , Cinética , Solventes , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA