Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(4): 044901, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725501

RESUMO

We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions and, thus, obtain an estimate of the random close packing volume fraction, ϕRCP, as a function of size polydispersity. We first consider mixtures of particle sizes with discrete distributions. For binary systems, we show agreement between our predictions and simulations using both our own results and results reported in previous studies, as well as agreement with recent experiments from the literature. We then apply our approach to systems with continuous polydispersity using three different particle size distributions, namely, the log-normal, Gamma, and truncated power-law distributions. In all cases, we observe agreement between our theoretical findings and numerical results up to rather large polydispersities for all particle size distributions when using as reference our own simulations and results from the literature. In particular, we find ϕRCP to increase monotonically with the relative standard deviation, sσ, of the distribution and to saturate at a value that always remains below 1. A perturbative expansion yields a closed-form expression for ϕRCP that quantitatively captures a distribution-independent regime for sσ < 0.5. Beyond that regime, we show that the gradual loss in agreement is tied to the growth of the skewness of size distributions.

2.
Phys Rev E ; 106(4-1): 044611, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397598

RESUMO

Inspired by groups of animals and robots, we study the collective dynamics of large numbers of active particles, each one trying to get to its own randomly placed target, while avoiding collisions with each other. The particles we study are repulsive homing active Brownian particles, self-propelled particles whose orientation relaxes at a finite rate towards an absorbing target in two-dimensional continuous space. For a wide range of parameters, these particles form synchronized system-wide chiral flocks, in spite of the absence of explicit alignment interactions. We show that this dramatic behavior obtains for different system sizes and density, that it is robust against the addition of noise, polydispersity, and bounding walls, and that it can exhibit dynamical topological defects. We develop an analogy to an off-lattice, ferromagnetic XY model, which allows us to interpret the different phases, as well as the topological defects.

3.
Phys Rev E ; 104(6-1): 064614, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030902

RESUMO

Traffic jams are an everyday hindrance to transport and typically arise when many vehicles have the same or a similar destination. We show, however, that even when uniformly distributed in space and uncorrelated, targets have a crucial effect on transport. At modest densities an instability arises leading to jams with emergent correlations between the targets. By considering limiting cases of the dynamics which map onto active Brownian particles, we argue that motility induced phase separation is the precursor to jams. That is, jams are MIPS seeds that undergo an extra instability due to target accumulation. This provides a quantitative prediction of the onset density for jamming, and suggests how jamming might be delayed or prevented. We study the transition between jammed and flowing phase, and find that transport is most efficient on the cusp of jamming.

4.
Phys Rev Lett ; 124(19): 198001, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469593

RESUMO

We study a 2D Hamiltonian fluid made of particles carrying spins coupled to their velocities. At low temperatures and intermediate densities, this conservative system exhibits phase coexistence between a collectively moving droplet and a still gas. The particle displacements within the droplet have remarkably similar correlations to those of birds flocks. The center of mass behaves as an effective self-propelled particle, driven by the droplet's total magnetization. The conservation of a generalized angular momentum leads to rigid rotations, opposite to the fluctuations of the magnetization orientation that, however small, are responsible for the shape and scaling of the correlations.

5.
J Chem Phys ; 150(15): 154501, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005076

RESUMO

We study the liquid-gas phase separation observed in a system of repulsive particles dressed with ferromagnetically aligning spins, a so-called "spin fluid." Microcanonical ensemble numerical simulations of finite-size systems reveal that magnetization sets in and induces a liquid-gas phase separation between a disordered gas and a ferromagnetic dense phase at low enough energies and large enough densities. The dynamics after a quench into the coexistence region show that the order parameter associated with the liquid-vapor phase separation follows an algebraic law with an unusual exponent, as it is forced to synchronize with the growth of the magnetization: this suggests that for finite size systems the magnetization sets in along a Curie line, which is also the gas-side spinodal line, and that the coexistence region ends at a tricritical point. This picture is confirmed at the mean-field level with different approximation schemes, namely, a Bethe lattice resolution and a virial expansion complemented by the introduction of a self-consistent Weiss-like molecular field. However, a detailed finite-size scaling analysis shows that in two dimensions the ferromagnetic phase escapes the Berezinskii-Kosterlitz-Thouless scenario and that the long-range order is not destroyed by the unbinding of topological defects. The Curie line thus becomes a magnetic crossover in the thermodynamic limit. Finally, the effects of the magnetic interaction range and those of the interaction softness are characterized within a mean-field semianalytical low-density approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA