Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(8): 1277-1286, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381001

RESUMO

IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.


Assuntos
Asma , MicroRNAs , Animais , Camundongos , Asma/genética , Citocinas/genética , Retroalimentação , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33 , Linfócitos/metabolismo , Mastócitos/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Immunohorizons ; 7(12): 842-852, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095595

RESUMO

All cells of the immune system reside in adipose tissue (AT), and increasing type 2 immune cells may be a therapeutic strategy to improve metabolic health. In our previous study using i.p. IL-5 injections to increase eosinophils, we observed that a standard vehicle control of 0.1% BSA also elicited profound AT eosinophilia. In this study, we aimed to determine whether BSA-induced AT eosinophilia results in metabolic benefits in murine models of diet-induced obesity. I.p. 0.1% BSA injections increased AT eosinophils after 4 wk. Despite elevating eosinophils to >50% of immune cells in the AT, body weight and glucose tolerance were not different between groups. Interestingly, BSA elicited epithelial IL-33 production, as well as gene expression for type 2 cytokines and IgE production that were dependent on IL-33. Moreover, multiple models of OVA sensitization also drove AT eosinophilia. Following transplantation of a donor fat pad with BSA-induced eosinophilia, OVA-sensitized recipient mice had higher numbers of bronchoalveolar lavage eosinophils that were recipient derived. Interestingly, lungs of recipient mice contained eosinophils, macrophages, and CD8 T cells from the donor AT. These trafficked similarly from BSA- and non-BSA-treated AT, suggesting even otherwise healthy AT serves as a reservoir of immune cells capable of migrating to the lungs. In conclusion, our studies suggest that i.p. injections of BSA and OVA induce an allergic response in the AT that elicits eosinophil recruitment, which may be an important consideration for those using OVA in animal models of allergic disease.


Assuntos
Eosinofilia , Hipersensibilidade , Camundongos , Animais , Ovalbumina , Soroalbumina Bovina , Interleucina-33 , Tecido Adiposo
3.
Sci Transl Med ; 15(723): eadf9382, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992150

RESUMO

Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Obesidade/complicações , Obesidade/terapia , Tecido Adiposo/metabolismo , Inflamação/metabolismo
4.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014269

RESUMO

Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.

5.
Diabetes Res Clin Pract ; 191: 110077, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36089102

RESUMO

AIMS: Following ST-segment elevation myocardial infarction (STEMI), recruitment and activation of monocytes [classical (CD14++CD16-CCR2++), intermediate (CD14++CD16+CCR2+), non-classical (CD14LowCD16++CCR2Low)] are needed for myocardial wound healing. Monocyte surface receptor CC chemokine receptor type 2 (CCR2) is responsible for monocyte chemotaxis to sites of inflammation and the lipopolysaccharide (LPS)-binding protein co-receptor, CD14, is involved in pro-inflammatory monocyte activation. The purpose of this investigation was to determine the effects of ex-vivo LPS activation on monocyte subset CD14 and CCR2 expression in post-STEMI individuals with normal and elevated random blood glucose. METHODS: Post-STEMI subjects were identified as normal random glucose (NG, <98 mg/dL, n = 13) or impaired random glucose (IG, ≥98 mg/dL, n = 26) and monocytes were analyzed for non-activated and LPS-activated (1 µg/mL for 4 h) CCR2 and CD14 expression. RESULTS: Non-activated intermediate monocytes from IG showed decreased CD14 expression when compared to NG, which was maintained following LPS-activation. The NG group showed a larger absolute reduction in classical CCR2 expression, leading to a significant difference between NG and IG following LPS-activation. CONCLUSION: Results suggest a heightened response to pro-inflammatory activation in IG following STEMI, which may impair or delay post-STEMI myocardial healing, and thus increase the incidence of chronic heart failure. NIH 1R34HL121402.


Assuntos
Hiperglicemia , Receptores de Lipopolissacarídeos/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST , Glicemia/metabolismo , Humanos , Hiperglicemia/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Receptores CCR/metabolismo , Receptores CCR2/metabolismo , Receptores de IgG/metabolismo
6.
Diabetes ; 71(11): 2313-2330, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802127

RESUMO

In the setting of obesity and insulin resistance, glycemia is controlled in part by ß-cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of factors essential for ß-cell function (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared with those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Secreção de Insulina , Ciclo de Peso , Obesidade/metabolismo , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Dieta , Hiperinsulinismo/metabolismo , Insulina Regular Humana , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo
7.
Nat Commun ; 13(1): 2950, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618862

RESUMO

Within adipose tissue (AT), immune cells and parenchymal cells closely interact creating a complex microenvironment. In obesity, immune cell derived inflammation contributes to insulin resistance and glucose intolerance. Diet-induced weight loss improves glucose tolerance; however, weight regain further exacerbates the impairment in glucose homeostasis observed with obesity. To interrogate the immunometabolic adaptations that occur in AT during murine weight loss and weight regain, we utilized cellular indexing of transcriptomes and epitopes by sequencing (CITEseq) in male mice. Obesity-induced imprinting of AT immune cells persisted through weight-loss and progressively worsened with weight regain, ultimately leading to impaired recovery of type 2 regulatory cells, activation of antigen presenting cells, T cell exhaustion, and enhanced lipid handling in macrophages in weight cycled mice. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease. For further discovery, we provide an open-access web portal of diet-induced AT immune cell imprinting: https://hastylab.shinyapps.io/MAIseq .


Assuntos
Tecido Adiposo , Redução de Peso , Tecido Adiposo/metabolismo , Animais , Glucose/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Fenótipo , Aumento de Peso
8.
Cell Immunol ; 371: 104457, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883342

RESUMO

Statins are HMG-CoA reductase inhibitors prescribed for lowering cholesterol. They can also inhibit inflammatory responses by suppressing isoprenylation of small G proteins. Consistent with this, we previously found that fluvastatin suppresses IgE-mediated mast cell function. However, some studies have found that statins induced pro-inflammatory cytokines in macrophages and NK cells. In contrast to IgE signaling, we show that fluvastatin augments IL-33-induced TNF and IL-6 production by mast cells. This effect required the key mast cell growth factor, stem cell factor (SCF). Treatment of IL-33-activated mast cells with mevalonic acid or isoprenoids reduced fluvastatin effects, suggesting fluvastatin acts at least partly by reducing isoprenoid production. Fluvastatin also enhanced IL-33-induced NF-κB transcriptional activity and promoted neutrophilic peritonitis in vivo, a response requiring mast cell activation. Other statins tested did not enhance IL-33 responsiveness. Therefore, this work supports observations of unexpected pro-inflammatory effects of some statins and suggests mechanisms by which this may occur. Because statins are candidates for repurposing in inflammatory disorders, our work emphasizes the importance of understanding the pleiotropic and possible unexpected effects of these drugs.


Assuntos
Fluvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Interleucina-33/metabolismo , Interleucina-6/biossíntese , Mastócitos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Células Cultivadas , Humanos , Imunoglobulina E/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Ácido Mevalônico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Prenilação/efeitos dos fármacos , Fator de Células-Tronco/metabolismo , Terpenos/farmacologia , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Front Immunol ; 13: 984859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713396

RESUMO

Introduction: Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods: Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results: Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion: Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Masculino , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ciclo de Peso , Imunidade Treinada , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Meios de Cultivo Condicionados/metabolismo , Lipopolissacarídeos/metabolismo , Resistência à Insulina/fisiologia , Tecido Adiposo , Obesidade , Macrófagos , Aumento de Peso , Diabetes Mellitus/metabolismo , Redução de Peso , Glucose/metabolismo
10.
Front Physiol ; 12: 688485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733170

RESUMO

Lactate and the associated H+ ions are still introduced in many biochemistry and general biology textbooks and courses as a metabolic by-product within fast or oxygen-independent glycolysis. However, the role of lactate as a fuel source has been well-appreciated in the field of physiology, and the role of lactate as a metabolic feedback regulator and distinct signaling molecule is beginning to gain traction in the field of immunology. We now know that while lactate and the associated H+ ions are generally immunosuppressive negative regulators, there are cell, receptor, mediator, and microenvironment-specific effects that augment T helper (Th)17, macrophage (M)2, tumor-associated macrophage, and neutrophil functions. Moreover, we are beginning to uncover how lactate and H+ utilize different transporters and signaling cascades in various immune cell types. These immunomodulatory effects may have a substantial impact in cancer, sepsis, autoimmunity, wound healing, and other immunomodulatory conditions with elevated lactate levels. In this article, we summarize the known effects of lactate and H+ on immune cells to hypothesize potential explanations for the divergent inflammatory vs. anti-inflammatory effects.

11.
J Immunol ; 207(8): 1941-1947, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607907

RESUMO

Our organization, Black in Immuno (@BlackInImmuno), was formed in September 2020 to celebrate, support, and amplify Black voices in immunology when social media campaigns like #BlackInTheIvory illuminated the shared overt and covert issues of systemic racism faced by Black researchers in all facets of science, technology, engineering, art, and mathematics. Black in Immuno was cofounded by a group of Black immunology trainees working at multiple institutions globally: Joël Babdor, E. Evonne Jean, Elaine Kouame, Alexis S. Mobley, Justine C. Noel, and Madina Wane. We devised Black in Immuno Week, held November 22-28, 2020, as a global celebration of Black immunologists. The week was designed to advocate for increased diversity and accessibility in immunology, amplify Black excellence in immunology, and create a community of Black immunologists who can support each other to flourish despite barriers in academia and other job sectors. The week contained live panels and scientific talks, a casual networking mixer, online advocacy and amplification sessions, and a series of wellness events. Our live-streamed programs reached over 300 individuals, and thousands of people kept the conversations going globally using #BlackInImmuno and #BlackInImmunoWeek on social media from five continents. Below, we highlight the events and significant takeaways of the week.


Assuntos
Alergia e Imunologia/ética , População Negra , Sistemas On-Line , Pesquisadores , Sucesso Acadêmico , Alergia e Imunologia/educação , Defesa do Consumidor , Humanos , Redes Sociais Online , Racismo , Inclusão Social , Estados Unidos , Webcasts como Assunto
12.
J Pharmacol Exp Ther ; 374(1): 104-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434944

RESUMO

Statin drugs are widely employed in the clinic to reduce serum cholesterol. Because of their hydroxymethylglutaryl coenzyme A reductase antagonism, statins also reduce isoprenyl lipids necessary for the membrane anchorage and signaling of small G-proteins in the Ras superfamily. We previously found that statins suppress immunoglobulin E (IgE)-mediated mast cell activation, suggesting these drugs might be useful in treating allergic disease. Although IgE-induced function is critical to allergic inflammation, mast cell proliferation and survival also impact atopic disease and mast cell neoplasia. In this study, we describe fluvastatin-mediated apoptosis in primary and transformed mast cells. An IC50 was achieved between 0.8 and 3.5 µM in both cell types, concentrations similar to the reported fluvastatin serum Cmax value. Apoptosis was correlated with reduced stem cell factor (SCF)-mediated signal transduction, mitochondrial dysfunction, and caspase activation. Complementing these data, we found that p53 deficiency or Bcl-2 overexpression reduced fluvastatin-induced apoptosis. We also noted evidence of cytoprotective autophagy in primary mast cells treated with fluvastatin. Finally, we found that intraperitoneal fluvastatin treatment reduced peritoneal mast cell numbers in vivo These findings offer insight into the mechanisms of mast cell survival and support the possible utility of statins in mast cell-associated allergic and neoplastic diseases. SIGNIFICANCE STATEMENT: Fluvastatin, a statin drug used to lower cholesterol, induces apoptosis in primary and transformed mast cells by antagonizing protein isoprenylation, effectively inhibiting stem cell factor (SCF)-induced survival signals. This drug may be an effective means of suppressing mast cell survival.


Assuntos
Apoptose/efeitos dos fármacos , Fluvastatina/farmacologia , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos
13.
Immunol Rev ; 295(1): 101-113, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237081

RESUMO

Macrophages comprise a majority of the resident immune cells in adipose tissue (AT) and regulate both tissue homeostasis in the lean state and metabolic dysregulation in obesity. Since the AT environment rapidly changes based upon systemic energy status, AT macrophages (ATMs) must adapt phenotypically and metabolically. There is a distinct dichotomy in the polarization and bioenergetics of in vitro models, with M2 macrophages utilizing oxidative phosphorylation (OX PHOS) and M1 macrophages utilizing glycolysis. Early studies suggested differential polarization of ATMs, with M2-like macrophages predominant in lean AT and M1-like macrophages in obese AT. However, recent studies show that the phenotypic plasticity of ATMs is far more complicated, which is also reflected in their bioenergetics. Multiple ATM populations exist along the M2 to M1 continuum and appear to utilize both glycolysis and OX PHOS in obesity. The significance of the dual fuel bioenergetics is unclear and may be related to an intermediate polarization, their buffering capacity, or the result of a mixed population of distinct polarized ATMs. Recent evidence also suggests that ATMs of lean mice serve as a substrate buffer or reservoir to modulate lipid, catecholamine, and iron availability. Furthermore, recent models of weight loss and weight cycling reveal additional roles for ATMs in systemic metabolism. Evaluating ATM phenotype and intracellular metabolism together may more accurately illuminate the consequences of ATM accumulation in obese AT, lending further insight into obesity-related comorbidities in humans.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Suscetibilidade a Doenças , Metabolismo Energético , Homeostase , Humanos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Obesidade/etiologia , Obesidade/metabolismo
14.
J Immunol ; 203(2): 453-464, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31160535

RESUMO

Sepsis has a well-studied inflammatory phase, with a less-understood secondary immunosuppressive phase. Elevated blood lactate and slow lactate clearance are associated with mortality; however, regulatory roles are unknown. We hypothesized that lactic acid (LA) contributes to the late phase and is not solely a consequence of bacterial infection. No studies have examined LA effects in sepsis models in vivo or a mechanism by which it suppresses LPS-induced activation in vitro. Because mast cells can be activated systemically and contribute to sepsis, we examined LA effects on the mast cell response to LPS. LA significantly suppressed LPS-induced cytokine production and NF-κB transcriptional activity in mouse bone marrow-derived mast cells and cytokine production in peritoneal mast cells. Suppression was MCT-1 dependent and reproducible with sodium lactate or formic acid. Further, LA significantly suppressed cytokine induction following LPS-induced endotoxemia in mice. Because glycolysis is linked to inflammation and LA is a byproduct of this process, we examined changes in glucose metabolism. LA treatment reduced glucose uptake and lactate export during LPS stimulation. LA effects were mimicked by glycolytic inhibitors and reversed by increasing ATP availability. These results indicate that glycolytic suppression and ATP production are necessary and sufficient for LA effects. Our work suggests that enhancing glycolysis and ATP production could improve immune function, counteracting LA suppressive effects in the immunosuppressive phase of sepsis.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicólise/efeitos dos fármacos , Ácido Láctico/farmacologia , Lipopolissacarídeos/farmacologia , Mastócitos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Curr Obes Rep ; 8(3): 210-219, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30919312

RESUMO

PURPOSE OF REVIEW: Research over the past decade has shown that immunologic and metabolic pathways are intricately linked. This burgeoning field of immunometabolism includes intrinsic and extrinsic pathways and is known to be associated with obesity-accelerated metabolic disease. Intrinsic immunometabolism includes the study of fuel utilization and bioenergetic pathways that influence immune cell function. Extrinsic immunometabolism includes the study of immune cells and products that influence systemic metabolism. RECENT FINDINGS: Th2 immunity, macrophage iron handling, adaptive immune memory, and epigenetic regulation of immunity, which all require intrinsic metabolic changes, play a role in systemic metabolism and metabolic function, linking the two arms of immunometabolism. Together, this suggests that targeting intrinsic immunometabolism can directly affect immune function and ultimately systemic metabolism. We highlight important questions for future basic research that will help improve translational research and provide therapeutic targets to help establish new treatments for obesity and associated metabolic disorders.


Assuntos
Obesidade/imunologia , Obesidade/metabolismo , Obesidade/terapia , Imunidade Adaptativa , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Epigênese Genética , Humanos , Imunidade , Memória Imunológica , Ferro/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Doenças Metabólicas/terapia , Redes e Vias Metabólicas , MicroRNAs/imunologia , MicroRNAs/metabolismo
16.
Methods Mol Biol ; 1799: 81-92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956146

RESUMO

Mast cells and basophils are important innate immune cells involved in resistance to parasitic infection and are critical orchestrators of allergic disease. The relative ease with which they are cultured from mouse or human tissues allows one to work with primary cells that maintain a differentiated and functional phenotype. In this chapter, we describe the methods by which mouse mast cells and basophils can be cultured from bone marrow. We also provide methods for isolating and expanding mouse peritoneal mast cells and human skin mast cells.


Assuntos
Basófilos/imunologia , Basófilos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Basófilos/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Separação Celular , Humanos , Imunoglobulina E/imunologia , Interleucina-3/metabolismo , Mastócitos/citologia , Camundongos , Lavagem Peritoneal , Pele/citologia , Pele/imunologia , Pele/metabolismo
17.
Front Immunol ; 9: 868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755466

RESUMO

Mast cells are tissue resident, innate immune cells with heterogenous phenotypes tuned by cytokines and other microenvironmental stimuli. Playing a protective role in parasitic, bacterial, and viral infections, mast cells are also known for their role in the pathogenesis of allergy, asthma, and autoimmune diseases. Here, we review factors controlling mast cell activation, with a focus on receptor signaling and potential therapies for allergic disease. Specifically, we will discuss our work with FcεRI and FγR signaling, IL-4, IL-10, and TGF-ß1 treatment, and Stat5. We conclude with potential therapeutics for allergic disease. Much of these efforts have been influenced by the work of Bill Paul. With many mechanistic targets for mast cell activation and different classes of therapeutics being studied, there is reason to be hopeful for continued clinical progress in this area.


Assuntos
Antialérgicos/uso terapêutico , Homeostase/imunologia , Hipersensibilidade/imunologia , Mastócitos/imunologia , Transdução de Sinais/imunologia , Antialérgicos/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , História do Século XX , História do Século XXI , Homeostase/efeitos dos fármacos , Humanos , Hipersensibilidade/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo
18.
Front Immunol ; 9: 3026, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619366

RESUMO

Cellular metabolism and energy sensing pathways are closely linked to inflammation, but there is little understanding of how these pathways affect mast cell function. Mast cells are major effectors of allergy and asthma, and can be activated by the alarmin IL-33, which is linked to allergic disease. Therefore, we investigated the metabolic requirements for IL-33-induced mast cell function, to identify targets for controlling inflammation. We found that IL-33 increases glycolysis, glycolytic protein expression, and oxidative phosphorylation (OX PHOS). Inhibiting OX PHOS had little effect on cytokine production, but antagonizing glycolysis with 2-deoxyglucose or oxamate suppressed inflammatory cytokine production in vitro and in vivo. ATP reversed this suppression. Glycolytic blockade suppressed IL-33 signaling, including ERK phosphorylation, NFκB transcription, and ROS production in vitro, and suppressed IL-33-induced neutrophil recruitment in vivo. To test a clinically relevant way to modulate these pathways, we examined the effects of the FDA-approved drug metformin on IL-33 activation. Metformin activates AMPK, which suppresses glycolysis in immune cells. We found that metformin suppressed cytokine production in vitro and in vivo, effects that were reversed by ATP, mimicking the actions of the glycolytic inhibitors we tested. These data suggest that glycolytic ATP production is important for IL-33-induced mast cell activation, and that targeting this pathway may be useful in allergic disease.


Assuntos
Hipersensibilidade/tratamento farmacológico , Interleucina-33/imunologia , Mastócitos/imunologia , Metformina/uso terapêutico , Peritonite/tratamento farmacológico , Trifosfato de Adenosina/biossíntese , Animais , Antimetabólitos/farmacologia , Células Cultivadas , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Feminino , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Interleucina-33/metabolismo , Masculino , Mastócitos/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa/efeitos dos fármacos , Peritonite/imunologia , Peritonite/metabolismo , Cultura Primária de Células , Resultado do Tratamento
19.
Cell Immunol ; 322: 41-48, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28964543

RESUMO

Mast cell activation via the high-affinity IgE receptor (FcεRI) elicits production of inflammatory mediators central to allergic disease. As a synthetic antioxidant and a potent ribonucleotide reductase (RNR) inhibitor, Didox (3,4-dihyroxybenzohydroxamic acid) has been tested in clinical trials for cancer and is an attractive therapeutic for inflammatory disease. We found that Didox treatment of mouse bone marrow-derived mast cells (BMMC) reduced IgE-stimulated degranulation and cytokine production, including IL-6, IL-13, TNF and MIP-1a (CCL3). These effects were consistent using BMMC of different genetic backgrounds and peritoneal mast cells. While the RNR inhibitor hydroxyurea had little or no effect on IgE-mediated function, high concentrations of the antioxidant N-acetylcysteine mimicked Didox-mediated suppression. Furthermore, Didox increased expression of the antioxidant genes superoxide dismutase and catalase, and suppressed DCFH-DA fluorescence, indicating reduced reactive oxygen species production. Didox effects were not due to changes in FcεRI expression or cell viability, suggesting it inhibits signaling required for inflammatory cytokine production. In support of this, we found that Didox reduced FcεRI-mediated AP-1 and NFκB transcriptional activity. Finally, Didox suppressed mast cell-dependent, IgE-mediated passive systemic anaphylaxis in vivo. These data demonstrate the potential use for Didox asa means of antagonizing mast cell responses in allergic disease.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E/imunologia , Mastócitos/imunologia , NF-kappa B/genética , Fator de Transcrição AP-1/genética , Acetilcisteína/farmacologia , Animais , Células da Medula Óssea/imunologia , Catalase/biossíntese , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL3/biossíntese , Hipersensibilidade/imunologia , Interleucina-13/biossíntese , Interleucina-6/biossíntese , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
20.
Cell Immunol ; 319: 10-16, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28750923

RESUMO

While IgE is considered the primary mediator of mast cell activation, IL-33 contributes substantially in asthma, allergic rhinitis, and atopic dermatitis. To develop effective treatments for allergic disease, it is important to understand the role of therapeutic agents on IL-33 activation. We examined the effect of Didox (3,4-dihydroxybenzohydroxamic acid), an antioxidant and ribonucleotide reductase (RNR) inhibitor, on IL-33-mediated mast cell activation. Didox suppressed IL-6, IL-13, TNF, and MIP-1α (CCL3) production in bone marrow derived mast cells following IL-33 activation. This suppression was observed in different genetic backgrounds and extended to peritoneal mast cells. The antioxidant N-acetylcysteine mimicked the suppression of Didox, albeit at a much higher dose, while the RNR inhibitor hydroxyurea had no effect. Didox substantially suppressed IL-33-mediated NFκB and AP-1 transcriptional activities. These results suggest that Didox attenuates IL-33-induced mast cell activation and should be further studied as a potential therapeutic agent for inflammatory diseases involving IL-33.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Imunossupressores/farmacologia , Interleucina-33/farmacologia , Mastócitos/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Quimiocina CCL3/antagonistas & inibidores , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Genes Reporter , Hidroxiureia/farmacologia , Interleucina-13/antagonistas & inibidores , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-33/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Luciferases/genética , Luciferases/imunologia , Masculino , Mastócitos/citologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/imunologia , Cultura Primária de Células , Transdução de Sinais , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA