Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6180, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261453

RESUMO

The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole magnet, has searched for axions in the 19.74 µeV to 22.47 µeV mass range. The detection concept follows the Sikivie haloscope principle, where Dark Matter axions convert into photons within a resonator immersed in a magnetic field. The CAST-CAPP resonator is an array of four individual rectangular cavities inserted in a strong dipole magnet, phase-matched to maximize the detection sensitivity. Here we report on the data acquired for 4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning mechanism of 10 MHz/ min between 4.774 GHz and 5.434 GHz. In the present work, we exclude axion-photon couplings for virialized galactic axions down to gaγγ = 8 × 10-14 GeV-1 at the 90% confidence level. The here implemented phase-matching technique also allows for future large-scale upgrades.

2.
Rev Sci Instrum ; 82(11): 114702, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128997

RESUMO

The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally, the trap capacity is converted into a resonator by means of an inductance. The tuned circuit's Q factor is directly linked to the input impedance "seen" by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MΩ. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a range of some tens of its 3dB bandwidth by means of tuning.

3.
Phys Lett B ; 700(1): 1-6, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21822351

RESUMO

We report on the first experimental results for microwave spectroscopy of the hyperfine structure of p¯3He+. Due to the helium nuclear spin, p¯3He+ has a more complex hyperfine structure than p¯4He+, which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton.

4.
Phys Rev Lett ; 100(9): 094801, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352714

RESUMO

Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA