Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581374

RESUMO

Plant defense peptides are paramount endogenous danger signals secreted after a challenge intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant-pathosystems, although the mechanisms behind Sys-IR when exogenously applied remain elusive. We performed proteomic, metabolomic and enzymatic studies to decipher the Sys-induced changes in tomato plants either in the absence or the presence of Botrytis cinerea infection. Sys-treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defense proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Out of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, the proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants, furthermore PR1 appeared as as key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that posttranslational protein regulation is an additional component of priming against necrotrophic fungi.

2.
Theor Appl Genet ; 137(2): 46, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332254

RESUMO

KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential. The amount of free asparagine in grain of a wheat genotype determines its potential to form harmful acrylamide in derivative food products. Here, we explored the variation in the free asparagine, aspartate, glutamine and glutamate contents of 485 accessions reflecting wheat worldwide diversity to define the genetic architecture governing the accumulation of these amino acids in grain. Accessions were grown under high and low nitrogen availability and in water-deficient and well-watered conditions, and plant and grain phenotypes were measured. Free amino acid contents of grain varied from 0.01 to 1.02 mg g-1 among genotypes in a highly heritable way that did not correlate strongly with grain yield, protein content, specific weight, thousand-kernel weight or heading date. Mean free asparagine content was 4% higher under high nitrogen and 3% higher in water-deficient conditions. After genotyping the accessions, single-locus and multi-locus genome-wide association study models were used to identify several QTLs for free asparagine content located on nine chromosomes. Each QTL was associated with a single amino acid and growing environment, and none of the QTLs colocalised with genes known to be involved in the corresponding amino acid metabolism. This suggests that free asparagine content is controlled by several loci with minor effects interacting with the environment. We conclude that breeding for reduced asparagine content is feasible, but should be firmly based on multi-environment field trials. KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential.


Assuntos
Asparagina , Triticum , Triticum/metabolismo , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/metabolismo , Aminoácidos/metabolismo , Fenótipo , Acrilamidas/metabolismo
3.
New Phytol ; 241(3): 1074-1087, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984856

RESUMO

Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.


Assuntos
Biodiversidade , Cactaceae , Dispersão Vegetal , Temperatura , Plantas/genética , Clima Desértico
4.
New Phytol ; 240(1): 242-257, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548068

RESUMO

The ascorbate-glutathione (ASC-GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients. Dynamic and associated regulations of the ASC-GSH cycle throughout the whole fruit development were analysed and pointed to a sequential metabolic control of redox fluxes by ASC synthesis, NAD(P)H and ROS availability depending on the developmental phase. Furthermore, we highlighted that monodehydroascorbate reductase and the availability of reducing power were found to be the main regulators of the redox state of ASC and GSH during fruit growth under optimal conditions. Our kinetic modelling approach indicated that tomato fruit development displayed growth phase-dependent redox metabolism linked with central metabolism via pyridine nucleotides and H2 O2 availability, while providing a new tool to the scientific community to investigate redox metabolism in fruits.


Assuntos
Solanum lycopersicum , Espécies Reativas de Oxigênio/metabolismo , Frutas , Oxirredução , Piridinas , Glutationa/metabolismo , Ácido Ascórbico
5.
Plant J ; 116(3): 786-803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531405

RESUMO

Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity. Then a constraint-based method is applied to a panel of eight fruit species with a knowledge-based metabolic model of heterotrophic cells describing a generic metabolic network of primary metabolism. The metabolic fluxes are estimated by constraining the model using a large set of metabolites and compounds quantified throughout fruit development. Multivariate analyses showed a clear common pattern of flux distribution during fruit development with differences between fast- and slow-growing fruits. Only the latter fruits mobilise the tricarboxylic acid cycle in addition to glycolysis, leading to a higher rate of respiration. More surprisingly, to balance nitrogen, the model suggests, on the one hand, nitrogen uptake by nitrate reductase to support a high RGR at early stages of cucumber and, on the other hand, the accumulation of alkaloids during ripening of pepper and eggplant. Finally, building virtual fruits by combining 12 biomass compounds shows that the growth-defence trade-off is supported mainly by cell wall synthesis for fast-growing fruits and by total polyphenols accumulation for slow-growing fruits.


Assuntos
Frutas , Redes e Vias Metabólicas , Frutas/metabolismo , Glicólise , Ciclo do Ácido Cítrico , Nitrogênio/metabolismo
6.
Plant Cell Environ ; 46(9): 2680-2693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219237

RESUMO

Tree stem respiration (RS ) is a substantial component of the forest carbon balance. The mass balance approach uses stem CO2 efflux and internal xylem fluxes to sum up RS , while the oxygen-based method assumes O2 influx as a proxy of RS . So far, both approaches have yielded inconsistent results regarding the fate of respired CO2 in tree stems, a major challenge for quantifying forest carbon dynamics. We collected a data set of CO2 efflux, O2 influx, xylem CO2 concentration, sap flow, sap pH, stem temperature, nonstructural carbohydrates concentration and potential phosphoenolpyruvate carboxylase (PEPC) capacity on mature beech trees to identify the sources of differences between approaches. The ratio of CO2 efflux to O2 influx was consistently below unity (0.7) along a 3-m vertical gradient, but internal fluxes did not bridge the gap between influx and efflux, nor did we find evidence for changes in respiratory substrate use. PEPC capacity was comparable with that previously reported in green current-year twigs. Although we could not reconcile differences between approaches, results shed light on the uncertain fate of CO2 respired by parenchyma cells across the sapwood. Unexpected high values of PEPC capacity highlight its potential relevance as a mechanism of local CO2 removal, which merits further research.


Assuntos
Fagus , Árvores , Dióxido de Carbono , Florestas , Carbono , Caules de Planta
7.
Plant Cell ; 35(7): 2615-2634, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052931

RESUMO

Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.


Assuntos
Antioxidantes , Galactose , Galactose/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico , Luz , Frutas/genética , Frutas/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Regulação da Expressão Gênica de Plantas
8.
J Exp Bot ; 73(14): 4832-4849, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512676

RESUMO

In this study, we aimed to investigate for the first time different fruit development stages in plantain banana in order gain insights into the order of appearance and dominance of specific enzymes and fluxes. We examined fruit development in two plantain banana cultivars during the period between 2-12 weeks after bunch emergence using high-throughput proteomics, quantification of major metabolites, and analyses of metabolic fluxes. Starch synthesis and breakdown are processes that take place simultaneously. During the first 10 weeks fruits accumulated up to 48% of their dry weight as starch, and glucose 6-phosphate and fructose were important precursors. We found a unique amyloplast transporter and hypothesize that it facilitates the import of fructose. We identified an invertase originating from the Musa balbisiana genome that would enable carbon flow back to growth and starch synthesis and maintain a high starch content even during ripening. Enzymes associated with the initiation of ripening were involved in ethylene and auxin metabolism, starch breakdown, pulp softening, and ascorbate biosynthesis. The initiation of ripening was cultivar specific, with faster initiation being particularly linked to the 1-aminocyclopropane-1-carboxylate oxidase and 4-alpha glucanotransferase disproportionating enzymes. Information of this kind is fundamental to determining the optimal time for picking the fruit in order to reduce post-harvest losses, and has potential applications for breeding to improve fruit quality.


Assuntos
Musa , Plantago , Frutose/metabolismo , Frutas , Musa/genética , Musa/metabolismo , Melhoramento Vegetal , Plantago/metabolismo , Amido/metabolismo
9.
Plant Physiol Biochem ; 179: 32-43, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306328

RESUMO

Drought and heat stresses are the main constrains to agricultural crop production worldwide. Precise and efficient phenotyping is essential to understand the complexity of plant responses to abiotic stresses and to identify the best management strategies to increase plant tolerance. In the present study, two phenotyping platforms were used to investigate the effects of a protein hydrolysate-based biostimulant on the physiological response of two tomato genotypes ('E42' and 'LA3120') subjected to heat, drought, or combined stress. The free amino acids in the biostimulant, or other molecules, stimulated growth in treated plants subjected to combined stress, probably promoting endogenous phytohormonal biosynthesis. Moreover, biostimulant application increased the net photosynthetic rate and maximal efficiency of PSII photochemistry under drought, possibly related to the presence of glycine betaine and aspartic acid in the protein hydrolysate. Increased antioxidant content and a decreased accumulation of hydrogen peroxide, proline, and soluble sugars in treated plants under drought and combined stress further demonstrated that the biostimulant application mitigated the negative effects of abiotic stresses. Generally, the response to biostimulant in plants had a genotype-dependent effect, with 'E42' showing a stronger response to protein hydrolysate application than 'LA3120'. Altogether, in this study a fine and multilevel phenotyping revealed increased plant performances under water-limited conditions and elevated temperatures induced by a protein hydrolysate, thus highlighting the great potential biostimulants have in improving plant resilience to abiotic stresses.


Assuntos
Solanum lycopersicum , Secas , Resposta ao Choque Térmico , Solanum lycopersicum/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Estresse Fisiológico
10.
New Phytol ; 234(5): 1614-1628, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288949

RESUMO

Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.


Assuntos
Brassicaceae , Ecossistema , Mudança Climática , Humanos , Metabolômica , Plantas , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34675082

RESUMO

In the context of climate change, plant mortality is increasing worldwide in both natural and agroecosystems. However, our understanding of the underlying causes is limited by the complex interactions between abiotic and biotic factors and the technical challenges that limit investigations of these interactions. Here, we studied the interaction between two main drivers of mortality, drought and vascular disease (esca), in one of the world's most economically valuable fruit crops, grapevine. We found that drought totally inhibited esca leaf symptom expression. We disentangled the plant physiological response to the two stresses by quantifying whole-plant water relations (i.e., water potential and stomatal conductance) and carbon balance (i.e., CO2 assimilation, chlorophyll, and nonstructural carbohydrates). Our results highlight the distinct physiology behind these two stress responses, indicating that esca (and subsequent stomatal conductance decline) does not result from decreases in water potential and generates different gas exchange and nonstructural carbohydrate seasonal dynamics compared to drought.


Assuntos
Secas , Folhas de Planta/fisiologia , Estresse Fisiológico , Vitis/fisiologia , Carbono/metabolismo , Água/metabolismo
12.
Environ Microbiol ; 23(10): 5962-5978, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33876545

RESUMO

The plant pathogen Ralstonia solanacearum uses plant resources to intensely proliferate in xylem vessels and provoke plant wilting. We combined automatic phenotyping and tissue/xylem quantitative metabolomics of infected tomato plants to decipher the dynamics of bacterial wilt. Daily acquisition of physiological parameters such as transpiration and growth were performed. Measurements allowed us to identify a tipping point in bacterial wilt dynamics. At this tipping point, the reached bacterial density brutally disrupts plant physiology and rapidly induces its death. We compared the metabolic and physiological signatures of the infection with drought stress, and found that similar changes occur. Quantitative dynamics of xylem content enabled us to identify glutamine (and asparagine) as primary resources R. solanacearum consumed during its colonization phase. An abundant production of putrescine was also observed during the infection process and was strongly correlated with in planta bacterial growth. Dynamic profiling of xylem metabolites confirmed that glutamine is the favoured substrate of R. solanacearum. On the other hand, a triple mutant strain unable to metabolize glucose, sucrose and fructose appears to be only weakly reduced for in planta growth and pathogenicity.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Virulência , Xilema/microbiologia
13.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760042

RESUMO

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide/genética , Mitocôndrias/genética , Mutação , Doença Aguda , Aminopiridinas/farmacologia , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Plant Cell Physiol ; 62(4): 668-677, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560438

RESUMO

NADP+, the phosphorylated form of nicotinamide adenine dinucleotide (NAD), plays an essential role in many cellular processes. NAD kinase (NADK), which is conserved in all living organisms, catalyzes the phosphorylation of NAD+ to NADP+. However, the physiological role of phosphorylation of NAD+ to NADP+ in the cyanobacterium Synechocystis remains unclear. In this study, we report that slr0400, an NADK-encoding gene in Synechocystis, functions as a growth repressor under light-activated heterotrophic growth conditions and light and dark cycle conditions in the presence of glucose. We show, via characterization of NAD(P)(H) content and enzyme activity, that NAD+ accumulation in slr0400-deficient mutant results in the unsuppressed activity of glycolysis and tricarboxylic acid (TCA) cycle enzymes. In determining whether Slr0400 functions as a typical NADK, we found that constitutive expression of slr0400 in an Arabidopsis nadk2-mutant background complements the pale-green phenotype. Moreover, to determine the physiological background behind the growth advantage of mutants lacking slr04000, we investigated the photobleaching phenotype of slr0400-deficient mutant under high-light conditions. Photosynthetic analysis found in the slr0400-deficient mutant resulted from malfunctions in the Photosystem II (PSII) photosynthetic machinery. Overall, our results suggest that NADP(H)/NAD(H) maintenance by slr0400 plays a significant role in modulating glycolysis and the TCA cycle to repress the growth rate and maintain the photosynthetic capacity.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Synechocystis/crescimento & desenvolvimento , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Teste de Complementação Genética , Luz , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fotossíntese , Plantas Geneticamente Modificadas , Synechocystis/metabolismo , Synechocystis/fisiologia
15.
Metabolites ; 10(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155921

RESUMO

Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different methods of application result in durable protection. Here, we demonstrate that the treatment of tomato plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea, Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic microbes that present different infection strategies. Metabolomic analyses revealed major changes after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore, top-down modelling from the detected metabolic markers allowed for the accurate prediction of the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is particularly insightful for a better understanding of defence priming in fruit. Further experiments are underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming in tomato fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA