Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 23(8): 507, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353680
2.
Nat Rev Cancer ; 23(4): 238-257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792751

RESUMO

Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Macrófagos Associados a Tumor/patologia , Neoplasias/patologia , Macrófagos , Biologia , Microambiente Tumoral
3.
Cancers (Basel) ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159100

RESUMO

There is a growing body of evidence that cancer causes systemic changes. These influences are most evident in the bone marrow and the blood, particularly in the myeloid compartment. Here, we show that there is an increase in the number of bone marrow, circulating and splenic monocytes by using mouse models of breast cancer caused by the mammary epithelial expression of the polyoma middle T antigen. Cancer does not affect ratios of classical to non-classical populations of monocytes in the circulation nor does it affect their half-lives. Single cell RNA sequencing also indicates that cancer does not induce any new monocyte populations. Cancer does not change the monocytic progenitor number in the bone marrow, but the proliferation rate of monocytes is higher, thus providing an explanation for the expansion of the circulating numbers. Deep RNA sequencing of these monocytic populations reveals that cancer causes changes in the classical monocyte compartment, with changes evident in bone marrow monocytes and even more so in the blood, suggesting influences in both compartments, with the down-regulation of interferon type 1 signaling and antigen presentation being the most prominent of these. Consistent with this analysis, down-regulated genes are enriched with STAT1/STAT2 binding sites in their promoter, which are transcription factors required for type 1 interferon signaling. However, these transcriptome changes in mice did not replicate those found in patients with breast cancer. Consequently, this mouse model of breast cancer may be insufficient to study the systemic influences of human cancer.

4.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204756

RESUMO

Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.


Assuntos
Sequenciamento por Nanoporos , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Fases de Leitura Aberta/genética , RNA-Seq
5.
Ann N Y Acad Sci ; 1499(1): 18-41, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445205

RESUMO

Tumorigenesis is not only determined by the intrinsic properties of cancer cells but also by their interactions with components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are among the most abundant immune cells in the TME. During initial stages of tumor development, macrophages can either directly promote antitumor responses by killing tumor cells or indirectly recruit and activate other immune cells. As genetic changes occur within the tumor or T helper 2 (TH 2) cells begin to dominate the TME, TAMs begin to exhibit an immunosuppressive protumor phenotype that promotes tumor progression, metastasis, and resistance to therapy. Thus, targeting TAMs has emerged as a strategy for cancer therapy. To date, TAM targeting strategies have focused on macrophage depletion and inhibition of their recruitment into the TME. However, these strategies have shown limited therapeutic efficacy, although trials are still underway with combination therapies. The fact that macrophages have the potential for antitumor activity has moved the TAM targeting field toward the development of TAM-reprogramming strategies to support this antitumor immune response. Here, we discuss the various roles of TAMs in cancer therapy and their immunosuppressive properties, as well as implications for emerging checkpoint inhibitor-based immunotherapies. We review state-of-the-art TAM-targeting strategies, focusing on current ones at the preclinical and clinical trial stages that aim to reprogram TAMs as an oncological therapy.


Assuntos
Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais , Citotoxicidade Imunológica , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907925

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. METHODS: We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. RESULTS: We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. CONCLUSIONS: This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.


Assuntos
Inflamação/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Feminino , Humanos , Masculino
7.
J Vis Exp ; (158)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32364544

RESUMO

Macrophages are present in most vertebrate tissues and comprise widely dispersed and heterogeneous cell populations with different functions. They are key players in health and disease, acting as phagocytes during immune defense and mediating trophic, maintenance, and repair functions. Although it has been possible to study some of the molecular processes involved in human macrophage function, it has proved difficult to apply genetic engineering techniques to primary human macrophages. This has significantly hampered our ability to interrogate the complex genetic pathways involved in macrophage biology and to generate models for specific disease states. An off-the-shelf source of human macrophages that is amenable to the vast arsenal of genetic manipulation techniques would, therefore, provide a valuable tool in this field. We present an optimized protocol that allows for the generation of macrophages from human induced pluripotent stem cells (iPSCs) in vitro. These iPSC-derived macrophages (iPSC-DMs) express human macrophage cell surface markers, including CD45, 25F9, CD163, and CD169, and our live-cell imaging functional assay demonstrates that they exhibit robust phagocytic activity. Cultured iPSC-DMs can be activated to different macrophage states that display altered gene expression and phagocytic activity by the addition of LPS and IFNg, IL4, or IL10. Thus, this system provides a platform to generate human macrophages carrying genetic alterations that model specific human disease and a source of cells for drug screening or cell therapy to treat these diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Biomarcadores/metabolismo , Contagem de Células , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Forma Celular , Células Cultivadas , Corpos Embrioides/citologia , Humanos , Macrófagos/metabolismo , Fagocitose , Fenótipo
8.
Curr Biol ; 30(6): R246-R248, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32208142

RESUMO

Cassetta and Pollard introduce tumor-associated macrophages and discuss their origin, diversity, function and plasticity.


Assuntos
Macrófagos Associados a Tumor/fisiologia , Animais , Humanos , Macrófagos Associados a Tumor/citologia , Macrófagos Associados a Tumor/imunologia
9.
Methods Enzymol ; 632: 113-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000892

RESUMO

Tumor-associated macrophages (TAMs) are becoming a promising target for cancer immunotherapy. Significant efforts have been made to study the detrimental role of TAMs both in vivo and in vitro. However, it remains challenging to isolate these macrophages to study their function in human cancers and there is the need to seek alternatives to address these limitations. In this review, we will focus on the three most relevant approaches to obtain in vitro fully differentiated macrophages i.e. peripheral blood, immortalized cell lines such as THP-1 or human induced pluripotent stem cells. We will also provide protocols for the polarization of human macrophages to a TAM-like cells in vitro.


Assuntos
Macrófagos Associados a Tumor/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Separação Celular/métodos , Humanos , Imunofenotipagem/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Monócitos/citologia , Monócitos/imunologia , Macrófagos Associados a Tumor/imunologia
10.
Cancer Cell ; 35(4): 588-602.e10, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930117

RESUMO

The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from endometrial and breast cancers are transcriptionally distinct from monocytes and their respective tissue-resident macrophages. We identified a breast TAM signature that is highly enriched in aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also identified an auto-regulatory loop between TAMs and cancer cells driven by tumor necrosis factor alpha involving SIGLEC1 and CCL8, which is self-reinforcing through the production of CSF1. Together these data provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by cancer, reflecting patient outcomes.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Reprogramação Celular , Macrófagos/metabolismo , Monócitos/metabolismo , Comunicação Parácrina , Transcrição Gênica , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/patologia , Terapia de Alvo Molecular , Monócitos/patologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Células THP-1 , Microambiente Tumoral
11.
Nat Commun ; 10(1): 881, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787325

RESUMO

Red blood cells mature within the erythroblastic island (EI) niche that consists of specialized macrophages surrounded by differentiating erythroblasts. Here we establish an in vitro system to model the human EI niche using macrophages that are derived from human induced pluripotent stem cells (iPSCs), and are also genetically programmed to an EI-like phenotype by inducible activation of the transcription factor, KLF1. These EI-like macrophages increase the production of mature, enucleated erythroid cells from umbilical cord blood derived CD34+ haematopoietic progenitor cells and iPSCs; this enhanced production is partially retained even when the contact between progenitor cells and macrophages is inhibited, suggesting that KLF1-induced secreted proteins may be involved in this enhancement. Lastly, we find that the addition of three secreted factors, ANGPTL7, IL-33 and SERPINB2, significantly enhances the production of mature enucleated red blood cells. Our study thus contributes to the ultimate goal of replacing blood transfusion with a manufactured product.


Assuntos
Eritroblastos/citologia , Eritrócitos/citologia , Eritropoese/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/citologia , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Antígenos CD34/metabolismo , Substitutos Sanguíneos/uso terapêutico , Transfusão de Sangue , Células-Tronco Hematopoéticas/citologia , Humanos , Interleucina-33/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Inibidor 2 de Ativador de Plasminogênio/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733286

RESUMO

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Assuntos
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
13.
Cancer Immunol Immunother ; 68(4): 687-697, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684003

RESUMO

In cancer, infection and inflammation, the immune system's function can be dysregulated. Instead of fighting disease, immune cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, heterogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and will be crucial to accelerate MDSC research in health and disease.


Assuntos
Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Animais , Biomarcadores , Separação Celular/métodos , Humanos , Imunofenotipagem/métodos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Primatas
14.
Nat Rev Drug Discov ; 17(12): 887-904, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361552

RESUMO

Infiltration of macrophages in solid tumours is associated with poor prognosis and correlates with chemotherapy resistance in most cancers. In mouse models of cancer, macrophages promote cancer initiation and malignant progression by stimulating angiogenesis, increasing tumour cell migration, invasion and intravasation and suppressing antitumour immunity. At metastatic sites, macrophages promote tumour cell extravasation, survival and subsequent growth. Each of these pro-tumoural activities is promoted by a subpopulation of macrophages that express canonical markers but have unique transcriptional profiles, which makes tumour-associated macrophages (TAMs) good targets for anticancer therapy in humans through either their ablation or their re-differentiation away from pro-tumoural towards antitumoural states. In this Review, we evaluate the state of the art of TAM-targeting strategies, focusing on the limitations and potential side effects of the different therapies such as toxicity, rebound effects and compensatory mechanisms. We provide an extensive overview of the different types of therapy used in the clinic and their limitations in light of known macrophage biology and propose new strategies for targeting TAMs.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Humanos
15.
Immunology ; 155(3): 285-293, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29963704

RESUMO

Tumour-infiltrating immune cells regulate tumour development and progression either negatively or positively. For example, cytotoxic lymphocytes (CTL) such as CD8+ T and natural killer (NK) cells can recognize and eliminate cancer cells, and thereby restrict the tumour growth and metastasis, if they exert full cytotoxicity. In contrast, tumour-infiltrating myeloid cells such as tumour-associated macrophages (TAM) promote the expansion and dissemination of cancer cells depending on their functional states. Given the tumour-killing ability of CTL, the augmentation of CTL-induced antitumour immune reactions has been considered as an attractive therapeutic modality for lethal solid tumours and several promising strategies have emerged, which include immune checkpoint inhibitors, cancer vaccines and adoptive CTL transfer. These immunotherapies are now tested in clinical trials and have shown significant antitumour effects in patients with lymphoma and some solid tumours such as melanoma and lung cancer. Despite these encouraging results, these therapies are not efficient in a certain fraction of patients and tumour types with tumour cell-intrinsic mechanisms such as impaired antigen presentation and/or tumour cell-extrinsic mechanisms including the accumulation of immunosuppressive cells. Several animal studies suggest that tumour-infiltrating myeloid cells, especially TAM, are one of the key targets to improve the efficacy of immunotherapies as these cells can suppress the functions of CD8+ T and NK cells. In this review, we will summarize recent animal studies regarding the involvement of TAM in the immune checkpoint, cancer vaccination and adoptive CTL transfer therapies, and discuss the therapeutic potential of TAM targeting to improve the immunotherapies.


Assuntos
Imunoterapia , Neoplasias Pulmonares , Macrófagos/imunologia , Melanoma , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Macrófagos/patologia , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-29786554

RESUMO

We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Assuntos
Diferenciação Celular , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Linhagem da Célula/fisiologia , Camadas Germinativas/crescimento & desenvolvimento , Humanos
17.
Front Cell Dev Biol ; 6: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670880

RESUMO

Inhibition of immune checkpoint pathways in CD8+ T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8+ T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.

18.
Cell Res ; 27(8): 963-964, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28429765

RESUMO

Tumor-associated macrophages (TAMs) contribute to breast cancer progression and dissemination; TAM-targeting strategies aimed at their reprogramming show promising preclinical results. In a new report Guerriero and colleagues demonstrate that a novel HDAC Class IIa inhibitor, TMP195, can reprogram monocytes and macrophages in the tumor into cells able to sustain a robust CD8 T cell-mediated anti-tumoral immune response.


Assuntos
Benzamidas/uso terapêutico , Neoplasias da Mama , Reprogramação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Macrófagos/imunologia , Oxidiazóis/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Reprogramação Celular/imunologia , Feminino , Humanos , Macrófagos/patologia , Monócitos/imunologia , Monócitos/patologia
19.
Front Immunol ; 8: 2004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387063

RESUMO

Metastasis-associated macrophages (MAMs) play pivotal roles in breast cancer metastasis by promoting extravasation and survival of metastasizing cancer cells. In a metastatic breast cancer mouse model, we previously reported that circulating classical monocytes (C-MOs) preferentially migrated into the tumor-challenged lung where they differentiated into MAMs. However, the fate and characteristics of C-MOs in the metastatic site has not been defined. In this study, we identified that adoptively transferred C-MOs (F4/80lowCD11b+Ly6C+) differentiated into a distinct myeloid cell population that is characterized as F4/80highCD11bhighLy6Chigh and gives rise to MAMs (F4/80lowCD11bhighLy6Clow) within 18 h after migration into the metastatic lung. In mouse models of breast cancer, the CD11bhighLy6Chigh MAM precursor cells (MAMPCs) were commonly found in the metastatic lung, and their accumulation was increased during metastatic tumor growth. The morphology and gene expression profile of MAMPCs were distinct from C-MOs and had greater similarity to MAMs. For example MAMPCs expressed mature macrophage markers such as CD14, CD36, CD64, and CD206 at comparable levels with MAMs, suggesting that MAMPCs have committed to a macrophage lineage in the tumor microenvironment. MAMPCs also expressed higher levels of Arg1, Hmox1, and Stab1 than C-MOs to a comparable level to MAMs. Expression of these MAM-associated genes in MAMPCs was reduced by genetic deletion of colony-stimulating factor 1 receptor (CSF1R). On the other hand, transient CSF1R blockade did not reduce the number of MAMPCs in the metastatic site, suggesting that CSF1 signaling is active in MAMPCs but is not required for their accumulation. Functionally MAMPCs suppressed the cytotoxicity of activated CD8+ T cells in vitro in part through superoxide production. Overall, our results indicate that immediately following migration into the metastatic tumors C-MOs differentiate into immunosuppressive cells that have characteristics of monocytic myeloid-derived suppressor cell phenotype and might be targeted to enhance efficacy of immunotherapy for metastatic breast cancer.

20.
Adv Exp Med Biol ; 899: 211-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27325269

RESUMO

The tumor microenvironment is a complex network of cells that support tumor progression and malignancy. It has been demonstrated that tumor cells can educate the immune system to promote a tumor-friendly environment. Among all these immune cells, tumor-associated macrophages (TAMs) are well represented and their presence in mouse models has been shown to promote tumor progression and metastasis. These effects are through the stimulation of angiogenesis, enhancement of tumor cell invasion and intravasation, immunosuppression, and at the metastatic site tumor cell extravasation and growth. However, the precise mechanisms are not fully understood. Furthermore there is limited information on TAMs derived from human cancers. For this reason it is important to be able to extract TAMs from tumors in order to compare their phenotypes, functions, and transcriptomes with normal resident tissue macrophages. Isolation of these cells is challenging due to the lack of markers and standardized protocols. Here we show an optimized protocol for the efficient isolation and extraction of resident macrophages and TAMs from human and mouse tissues by using multicolor flow cytometry. These protocols allow for the extraction of thousands of macrophages in less than 5 h from tissues as small as half a gram. The isolated macrophages can then be used for both "omics" and in vitro studies.


Assuntos
Separação Celular/métodos , Macrófagos/patologia , Neoplasias/patologia , Animais , Neoplasias da Mama/patologia , Feminino , Citometria de Fluxo , Hemólise , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA