Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511580

RESUMO

Kinase Suppressor of RAS 1 (KSR1) is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS-mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E-transformed melanoma cell line. KSR1 loss produced a complex phenotype characterised by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas ras/metabolismo
2.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684883

RESUMO

The natural compound curcumin has been shown to have therapeutic potential against a wide range of diseases such as cancer. Curcumin reduces cell viability of renal cell carcinoma (RCC) cells when combined with TNF-related apoptosis-inducing ligand (TRAIL), a cytokine that specifically targets cancer cells, by helping overcome TRAIL resistance. However, the therapeutic effects of curcumin are limited by its low bioavailability. Similar compounds to curcumin with higher bioavailability, such as demethoxycurcumin (DMC) and 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), can potentially have similar anticancer effects and show a similar synergy with TRAIL, thus reducing RCC viability. This study aims to show the effects of DMC and EF24 in combination with TRAIL at reducing ACHN cell viability and ACHN cell migration. It also shows the changes in death receptor 4 (DR4) expression after treatment with these compounds individually and in combination with TRAIL, which can play a role in their mechanism of action.


Assuntos
Compostos de Benzilideno/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Diarileptanoides/farmacologia , Neoplasias Renais/tratamento farmacológico , Piperidonas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Apoptose , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular , Quimioterapia Combinada , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Células Tumorais Cultivadas
3.
Brain Behav Immun Health ; 10: 100184, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34589721

RESUMO

INTRODUCTION: Amitriptyline is prescribed to reduce the intensity of chronic neuropathic pain. There is a paucity of validated in vivo evidence in humans regarding amitriptyline's mechanism of action. We examined the effect of amitriptyline therapy on cerebrospinal fluid (CSF) neuropeptides and proteome in patients with chronic neuropathic pain to identify potential mechanisms of action of amitriptyline. METHODS: Patients with lumbar radicular neuropathic pain were selected for inclusion with clinical and radiological signs and a >50% reduction in pain in response to a selective nerve root block. Baseline (pre-treatment) and 8-week (post-treatment) pain scores with demographics were recorded. CSF samples were taken at baseline (pre-treatment) and 8 weeks after amitriptyline treatment (post-treatment). Proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: A total of 9/16 patients experienced a >30% reduction in pain after treatment with amitriptyline and GO analysis demonstrated that the greatest modulatory effect was on immune system processes. KEGG analysis also identified a reduction in PI3K-Akt and MAPK signalling pathways in responders but not in non-responders. There was also a significant decrease in the chemokine eotaxin-1 (p â€‹= â€‹0.02) and a significant increase in the neurotrophin VEGF-A (p â€‹= â€‹0.04) in responders. CONCLUSION: The CSF secretome and proteome was modulated in responders to amitriptyline verifying many pre-clinical and in vitro models. The predominant features were immunomodulation with a reduction in pro-inflammatory pathways of neuronal-glia communications and evidence of a neurotrophic effect.

4.
Nanotoxicology ; 15(2): 238-256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33332178

RESUMO

Inhalation of multi-walled carbon nanotubes (MWCNTs) induces lung inflammation. Depending on industrial applications, CNTs with different physicochemical characteristics are produced and workers can potentially be exposed. This raises concerns about the long-term health effects of these nanomaterials. Because of the wide variety of MWCNTs, it is essential to study the toxicological effects of CNTs of various shapes and to better understand the impact physical and chemical properties have on their toxicity. In this study, rats were exposed by nose-only to two pristine MWCNTs with different morphologies: the long and thick NM-401 or the short and thin NM-403. After four weeks of inhalation, animals were euthanized at four different times during the recovery period: three days (short-term), 30 and 90 days (intermediate-term) and 180 days (long-term). Analyses of the transcriptome in the whole lung and the proteome in the bronchoalveolar lavage fluid of exposed animals were performed to understand the MWCNT underlying mechanisms of toxicity. Following inhalation of NM-401, we observed a dose-dependent increase in the number of differentially expressed genes and proteins, whereas there is no clear difference between the two concentrations of NM-403. After NM-403 inhalation, the number of differentially expressed genes and proteins varied less between the four post-exposure times compared to NM-401, which supports the postulation of a persistent effect of this type of CNT. Our toxicogenomics approaches give insights into the different toxicological profile following MWCNT exposure.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Nanotubos de Carbono/química , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Toxicogenética
5.
J Neuroimmune Pharmacol ; 16(3): 634-650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33219474

RESUMO

The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.


Assuntos
Analgésicos Opioides , Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Medição da Dor , Projetos Piloto , Proteômica
6.
Biology (Basel) ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370057

RESUMO

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.

7.
J Neuroimmunol ; 344: 577249, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361148

RESUMO

INTRODUCTION: Patients with neuropathic pain have altered proteomic and neuropeptide constituents in cerebrospinal fluid (CSF) compared to controls. Tonic spinal cord stimulation (SCS) has demonstrated differential expression of neuropeptides in CSF before and after treatment suggesting potential mechanisms of action. Burst-SCS is an evidence-based paraesthesia free waveform utilised for neuropathic pain with a potentially different mechanistic action to tonic SCS. This study examines the dynamic biological changes of CSF at a cellular and proteome level after Burst-SCS. METHODS: Patients with neuropathic pain selected for SCS had CSF sampled prior to implant of SCS and following 8 weeks of continuous Burst-SCS. Baseline and 8-week pain scores with demographics were recorded. T cell frequencies were analysed by flow cytometry, proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: 4 patients (2 females, 2 males) with a mean age of 51 years (+/-SEM 2.74, SD 5.48) achieved a reduction in pain of >50% following 8 weeks of Burst-SCS. Analysis of the CSF proteome indicated a significant alteration in protein expression most related to synapse assembly and immune regulators. There was significantly lower expression of the proteins: growth hormone A1 (PRL), somatostatin (SST), nucleobindin-2 (NUCB2), Calbindin (CALB1), acyl-CoA binding protein (DBI), proSAAS (PCSK1N), endothelin-3 (END3) and cholecystokinin (CCK) after Burst-SCS. The concentrations of secreted chemokines and cytokines and the frequencies of T cells were not significantly changed following Burst-SCS. CONCLUSION: This study characterised the alteration in the CSF proteome in response to burst SCS in vivo. Functional analysis indicated that the alterations in the CSF proteome is predominately linked to synapse assembly and immune effectors. Individual protein analysis also suggests potential supraspinal mechanisms.


Assuntos
Dor Crônica/líquido cefalorraquidiano , Dor Crônica/terapia , Neuralgia/líquido cefalorraquidiano , Neuralgia/terapia , Proteoma/metabolismo , Estimulação da Medula Espinal/métodos , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Dor Crônica/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/genética , Projetos Piloto , Proteoma/genética , Resultado do Tratamento
8.
Thorax ; 75(6): 449-458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265339

RESUMO

RATIONALE: Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene form the basis of cystic fibrosis (CF). There remains an important knowledge gap in CF as to how diminished CFTR activity leads to the dominant inflammatory response within CF airways. OBJECTIVES: To investigate if extracellular vesicles (EVs) contribute to inflammatory signalling in CF. METHODS: EVs released from CFBE41o-, CuFi-5, 16HBE14o- and NuLi-1 cells were characterised by nanoparticle tracking analysis (NTA). EVs isolated from bronchoalveolar lavage fluid (BALF) from 30 people with CF (PWCF) were analysed by NTA and mass spectrometry and compared with controls. Neutrophils were isolated from the blood of 8 PWCF to examine neutrophil migration in the presence of CFBE41o- EVs. RESULTS: A significantly higher level of EVs were released from CFBE41o- (p<0.0001) and CuFi-5 (p=0.0209) relative to control cell lines. A significantly higher level of EVs were detected in BALF of PWCF, in three different age groups relative to controls (p=0.01, 0.001, 0.002). A significantly lower level of EVs were released from CFBE41o- (p<0.001) and CuFi-5 (p=0.0002) cell lines treated with CFTR modulators. Significant changes in the protein expression of 126 unique proteins was determined in EVs obtained from the BALF of PWCF of different age groups (p<0.001-0.05). A significant increase in chemotaxis of neutrophils derived from PWCF was observed in the presence of CFBE41o EVs (p=0.0024) compared with controls. CONCLUSION: This study demonstrates that EVs are produced in CF airway cells, have differential protein expression at different ages and drive neutrophil recruitment in CF.


Assuntos
Fibrose Cística/metabolismo , Vesículas Extracelulares/metabolismo , Adolescente , Adulto , Fatores Etários , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Movimento Celular , Células Cultivadas , Quimiotaxia , Criança , Pré-Escolar , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Nanopartículas , Neutrófilos/metabolismo , Projetos Piloto , Transdução de Sinais , Transfecção
9.
J Nanobiotechnology ; 18(1): 36, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093716

RESUMO

Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.


Assuntos
Perfilação da Expressão Gênica , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Autofagia , Cátions , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Proteômica , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Cell Biol Toxicol ; 36(1): 65-82, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31352547

RESUMO

Metal oxide nanoparticles (NPs), such as ZnO, ZnFe2O4, and Fe2O3, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFe2O4, and Fe2O3 in the in vitro rat alveolar macrophages (NR8383). As in our model, the calculated IC50 were respectively 16, 68, and more than 200 µg/mL for ZnO, ZnFe2O4, and Fe2O3; global gene and protein expression profiles were only analyzed after exposure to ZnO and ZnFe2O4 NPs. Using a rat genome microarray technology, we found that 985 and 1209 genes were significantly differentially expressed in NR8383 upon 4 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. It is noteworthy that metallothioneins were overexpressed genes following exposure to both NPs. Moreover, Ingenuity Pathway Analysis revealed that the top canonical pathway disturbed in NR8383 exposed to ZnO and ZnFe2O4 NPs was eIF2 signaling involved in protein homeostasis. Quantitative mass spectrometry approach performed from both NR8383 cell extracts and culture supernatant indicated that 348 and 795 proteins were differentially expressed upon 24 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. Bioinformatics analysis revealed that the top canonical pathways disturbed in NR8383 were involved in protein homeostasis and cholesterol biosynthesis for both exposure conditions. While VEGF signaling was specific to ZnO exposure, iron homeostasis signaling pathway was specific to ZnFe2O4 NPs. Overall, the study provides resource of transcriptional and proteomic markers of response to ZnO and ZnFe2O4 NP-induced toxicity through combined transcriptomics, proteomics, and bioinformatics approaches.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Animais , Linhagem Celular , Biologia Computacional/métodos , Homeostase , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Proteômica/métodos , Ratos , Transdução de Sinais , Óxido de Zinco/química , Óxido de Zinco/toxicidade
11.
Cell Biol Toxicol ; 36(4): 387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31884677

RESUMO

Unfortunately, the author names in the author group section were incorrectly captured in the published online paper.

12.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165532, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422117

RESUMO

BACKGROUND: Primary cilia have been shown to play a central role in regulating epithelial cell differentiation during injury and repair. Growing evidence implicates structural and functional abnormalities of primary cilia in kidney epithelial cells in the onset and development of various kidney diseases including polycystic kidney disease (PKD). Neutrophil-gelatinase associated lipocalin (NGAL) has been identified as a reliable urinary biomarker of kidney injury. However, the mechanism by which this protein accumulates in patient urine samples has not been fully elucidated. METHODS: Human renal tubular epithelial cells (RPTECs) were exposed to previously characterized deciliating agents to assess mechanisms of primary cilium loss. Confocal immunofluorescent imaging was employed to visualise the effects on cilia. Western blot analysis was utilised to quantify the ciliary protein Arl13b in both RPTEC whole cell lysates and supernatants. Co-immunoprecipitation was used to demonstrate co-localisation of Arl13b and NGAL in urinary samples from a clinical Chronic Allograft Nephropathy (CAN) cohort. RESULTS: Immunofluorescent analysis revealed that NGAL was localised to the primary cilium in RPTECs, co-localizing with a ciliary specific protein, Arl13b. Deciliation experiments showed that loss of the cilia coincided with loss of NGAL from the cells. CONCLUSION: The accumulation of NGAL in supernatants in vitro and in the urine of CAN patients was concurrent with loss of Arl13b, a specific ciliary protein. The findings of this study propose that increased NGAL urinary concentrations are directly linked to deciliation of the renal epithelial cells as a result of injury.


Assuntos
Cílios/patologia , Células Epiteliais/patologia , Nefropatias/diagnóstico , Túbulos Renais/patologia , Lipocalina-2/análise , Fatores de Ribosilação do ADP/análise , Fatores de Ribosilação do ADP/urina , Biomarcadores/análise , Linhagem Celular , Cílios/química , Células Epiteliais/citologia , Humanos , Nefropatias/patologia , Nefropatias/urina , Túbulos Renais/citologia , Lipocalina-2/urina
13.
Toxicol Sci ; 171(2): 303-314, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271423

RESUMO

A rapid increase of new nanomaterial (NM) products poses new challenges for their risk assessment. Current traditional methods for estimating potential adverse health effect of NMs are complex, time consuming, and expensive. In order to develop new prediction tests for nanotoxicity evaluation, a systems biology approach, and data from high-throughput omics experiments can be used. We present a computational approach that combines reverse engineering techniques, network analysis and pathway enrichment analysis for inferring the transcriptional regulation landscape and its functional interpretation. To illustrate this approach, we used published transcriptomic data derived from mice lung tissue exposed to carbon nanotubes (NM-401 and NRCWE-26). Because fibrosis is the most common adverse effect of these NMs, we included in our analysis the data for bleomycin (BLM) treatment, which is a well-known fibrosis inducer. We inferred gene regulatory networks for each NM and BLM to capture functional hierarchical regulatory structures between genes and their regulators. Despite the different nature of the lung injury caused by nanoparticles and BLM, we identified several conserved core regulators for all agents. We reason that these regulators can be considered as early predictors of toxic responses after NMs exposure. This integrative approach, which refines traditional methods of transcriptomic analysis, can be useful for prioritization of potential core regulators and generation of new hypothesis about mechanisms of nanoparticles toxicity.

14.
Front Pharmacol ; 10: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723407

RESUMO

Rationale: Obesity is a risk factor for atherothrombosis and various cancers. However, the mechanisms are not yet completely clarified. Objectives: We aimed to verify whether the microparticles (MPs) released from thrombin-activated platelets differed in obese and non-obese women for number, size, and proteomics cargo and the capacity to modulate in vitro the expression of (i) genes related to the epithelial to mesenchymal transition (EMT) and the endothelial to mesenchymal transition (EndMT), and (ii) cyclooxygenase (COX)-2 involved in the production of angiogenic and inflammatory mediators. Methods and Results: MPs were obtained from thrombin activated platelets of four obese and their matched non-obese women. MPs were analyzed by cytofluorimeter and protein content by liquid chromatography-mass spectrometry. MPs from obese women were not different in number but showed increased heterogeneity in size. In obese individuals, MPs containing mitochondria (mitoMPs) expressed lower CD41 levels and increased phosphatidylserine associated with enhanced Factor V representing a signature of a prothrombotic state. Proteomics analysis identified 44 proteins downregulated and three upregulated in MPs obtained from obese vs. non-obese women. A reduction in the proteins of the α-granular membrane and those involved in mitophagy and antioxidant defenses-granular membrane was detected in the MPs of obese individuals. MPs released from platelets of obese individuals were more prone to induce the expression of marker genes of EMT and EndMT when incubated with human colorectal cancer cells (HT29) and human cardiac microvascular endothelial cells (HCMEC), respectively. A protein, highly enhanced in obese MPs, was the pro-platelet basic protein with pro-inflammatory and tumorigenic actions. Exclusively MPs from obese women induced COX-2 in HCMEC. Conclusion: Platelet-derived MPs of obese women showed higher heterogeneity in size and contained different levels of proteins relevant to thrombosis and tumorigenesis. MPs from obese individuals presented enhanced capacity to cause changes in the expression of EMT and EndMT marker genes and to induce COX-2. These effects might contribute to the increased risk for the development of thrombosis and multiple malignancies in obesity. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01581801.

15.
Nano Lett ; 18(8): 5294-5305, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30039976

RESUMO

Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane's disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Nanotubos/química , Titânio/química , Animais , Coagulação Sanguínea/fisiologia , Movimento Celular , Sobrevivência Celular , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Pulmão/citologia , Camundongos , Tamanho da Partícula , Coroa de Proteína/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Propriedades de Superfície
16.
J Clin Med ; 5(5)2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27128949

RESUMO

Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-ß mRNA were assessed by RT PCR and TGF-ß secretion was measured by ELISA. The impact of increased TGF-ß secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-ß signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-ß/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

17.
Proteomics Clin Appl ; 9(5-6): 574-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25951805

RESUMO

PURPOSE: Chronic allograft nephropathy (CAN) is widely accepted as the leading cause of renal allograft loss after the first year post transplantation. This study aimed to identify urinary biomarkers that could predict CAN in transplant patients. EXPERIMENTAL DESIGN: The study included 34 renal transplant patients with histologically proven CAN and 36 renal transplant patients with normal renal function. OrbiTrap MS was utilized to analysis a urinary fraction in order to identify other members of a previously identified biomarker tree . This novel biomarker pattern offers the potential to distinguish between transplant recipients with CAN and those with normal renal function. RESULTS: The primary node of the biomarker pattern was reconfirmed as ß2 microglobulin. Three other members of this biomarker pattern were identified: neutrophil gelatinase-associated lipocalin, clusterin, and kidney injury biomarker 1. Significantly higher urinary concentrations of these proteins were found in patients with CAN compared to those with normal kidney function. CONCLUSIONS AND CLINICAL RELEVANCE: While further validation in a larger more-diverse patient population is required to determine if this biomarker pattern provides a potential means of diagnosing CAN by noninvasive methods in a clinical setting, this study clearly demonstrates the biomarkers' ability to stratify patients based on transplant function.


Assuntos
Rejeição de Enxerto/urina , Nefropatias/urina , Fragmentos de Peptídeos/urina , Proteinúria/urina , Aloenxertos , Sequência de Aminoácidos , Biomarcadores/urina , Função Retardada do Enxerto , Humanos , Transplante de Rim , Dados de Sequência Molecular , Fragmentos de Peptídeos/química
18.
Proteomes ; 1(2): 159-179, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28250402

RESUMO

This review focuses on the role of OMICs technologies, concentrating in particular on proteomics, in biomarker discovery in chronic allograft injury (CAI). CAI is the second most prevalent cause of allograft dysfunction and loss in the first decade post-transplantation, after death with functioning graft (DWFG). The term CAI, sometimes referred to as chronic allograft nephropathy (CAN), describes the deterioration of renal allograft function and structure as a result of immunological processes (chronic antibody-mediated rejection), and other non-immunological factors such as calcineurin inhibitor (CNI) induced nephrotoxicity, hypertension and infection. Current methods for assessing allograft function are costly, insensitive and invasive; traditional kidney function measurements such as serum creatinine and glomerular filtration rate (GFR) display poor predictive abilities, while the current "gold-standard" involving histological diagnosis with a renal biopsy presents its own inherent risks to the overall health of the allograft. As early as two years post-transplantation, protocol biopsies have shown more than 50% of allograft recipients have mild CAN; ten years post-transplantation more than 50% of the allograft recipients have progressed to severe CAN which is associated with diminishing graft function. Thus, there is a growing medical requirement for minimally invasive biomarkers capable of identifying the early stages of the disease which would allow for timely intervention. Proteomics involves the study of the expression, localization, function and interaction of the proteome. Proteomic technologies may be powerful tools used to identify novel biomarkers which would predict CAI in susceptible individuals. In this paper we will review the use of proteomics in the elucidation of novel predictive biomarkers of CAI in clinical, animal and in vitro studies.

19.
J Signal Transduct ; 2012: 463617, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523682

RESUMO

This paper focuses on the role that mitogen-activated protein kinases (MAPKs) play in drug-induced kidney injury. The MAPKs, of which there are four major classes (ERK, p38, JNK, and ERK5/BMK), are signalling cascades which have been found to be broadly conserved across a wide variety of organisms. MAPKs allow effective transmission of information from the cell surface to the cytosolic or nuclear compartments. Cross talk between the MAPKs themselves and with other signalling pathways allows the cell to modulate responses to a wide variety of external stimuli. The MAPKs have been shown to play key roles in both mediating and ameliorating cellular responses to stress including xenobiotic-induced toxicity. Therefore, this paper will discuss the specific role of the MAPKs in the kidney in response to injury by a variety of xenobiotics and the potential for therapeutic intervention at the level of MAPK signalling across different types of kidney disease.

20.
Proteomics Clin Appl ; 5(7-8): 422-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751411

RESUMO

PURPOSE: Chronic allograft nephropathy (CAN) remains the leading cause of renal graft loss after the first year following renal transplantation. This study aimed to identify novel urinary proteomic profiles, which could distinguish and predict CAN in susceptible individuals. EXPERIMENTAL DESIGN: The study included 34 renal transplant patients with histologically proven CAN and 36 patients with normal renal transplant function. High-throughput proteomic profiles were generated from urine samples with three different ProteinChip arrays by surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Following SELDI, a biomarker pattern software analysis was performed which led to the identification of a novel biomarker pattern that could distinguish patients with CAN from those with normal renal function. RESULTS: An 11.7 kDa protein identified as ß2 microglobulin was the primary protein of this biomarker pattern, distinguishing CAN from control patients (receiver operator characteristic [ROC]=0.996). SELDI-TOF-MS comparison of purified ß2 microglobulin protein and CAN urine demonstrated identical 11.7 kDa protein peaks. Significantly, higher concentrations of 2 microglobulin were found in the urine of patients with CAN compared with the urine of normal renal function transplant recipients (p<0.001). CONCLUSIONS AND CLINICAL RELEVANCE: Although further validation in a larger more diverse patient population is required to determine if this ß2 microglobulin protein biomarker will provide a potential means of diagnosing CAN by noninvasive methods in a clinical setting, this study clearly shows a capability to stratify control and disease patients.


Assuntos
Glomerulonefrite Membranosa/diagnóstico , Glomerulosclerose Segmentar e Focal/diagnóstico , Transplante de Rim/efeitos adversos , Rim/patologia , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Microglobulina beta-2/análise , Adulto , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Glomerulonefrite Membranosa/etiologia , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/urina , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/urina , Humanos , Pessoa de Meia-Idade , Análise Serial de Proteínas/métodos , Software , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA