Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603526

RESUMO

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Raios Ultravioleta , Processos Fotoquímicos , Atmosfera , Metano
2.
Nat Commun ; 15(1): 1856, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424051

RESUMO

Water is routinely exposed to external electric fields. Whether, for example, at physiological conditions, in contact with biological systems, or at the interface of polar surfaces in countless technological settings, water responds to fields on the order of a few V Å-1 in a manner that is under intense investigation. Dating back to the 19th century, the possibility of solidifying water upon applying electric fields - a process known as electrofreezing - is an alluring promise that has canalized major efforts since, with uncertain outcomes. Here, we perform long (up to 500 ps per field strength) ab initio molecular dynamics simulations of water at ambient conditions under external electric fields. We show that fields of 0.10 - 0.15 V Å-1 induce electrofreezing to a ferroelectric amorphous phase which we term f-GW (ferroelectric glassy water). The transition occurs after ~ 150 ps for a field of 0.15 V Å-1 and after ~ 200 ps for a field of 0.10 V Å-1 and is signaled by a structural and dynamic arrest and the suppression of the fluctuations of the hydrogen bond network. Our work reports evidence of electrofreezing of bulk liquid water at ambient conditions and therefore impacts several fields, from fundamental chemical physics to biology and catalysis.

3.
J Phys Chem B ; 127(45): 9822-9832, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37930954

RESUMO

The structure of the excess proton in liquid water has been the subject of lively debate on both experimental and theoretical fronts for the last century. Fluctuations of the proton are typically interpreted in terms of limiting states referred to as the Eigen and Zundel species. Here, we put these ideas under the microscope, taking advantage of recent advances in unsupervised learning that use local atomic descriptors to characterize environments of acidic water combined with advanced clustering techniques. Our agnostic approach leads to the observation of only one charged cluster and two neutral ones. We demonstrate that the charged cluster involving the excess proton is best seen as an ionic topological defect in water's hydrogen bond network, forming a single local minimum on the global free-energy landscape. This charged defect is a highly fluxional moiety, where the idealized Eigen and Zundel species are neither limiting configurations nor distinct thermodynamic states. Instead, the ionic defect enhances the presence of neutral water defects through strong interactions with the network. We dub the combination of the charged and neutral defect clusters as ZundEig, demonstrating that the fluctuations between these local environments provide a general framework for rationalizing more descriptive notions of the proton in the existing literature.

4.
J Phys Chem Lett ; 14(35): 7808-7813, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37623433

RESUMO

Among the many prototypical acid-base systems, ammonia aqueous solutions hold a privileged place, owing to their omnipresence in various planets and their universal solvent character. Although the theoretical optimal water-ammonia molar ratio to form NH4+ and OH- ion pairs is 50:50, our ab initio molecular dynamics simulations show that the tendency of forming these ionic species is inversely (directly) proportional to the amount of ammonia (water) in ammonia aqueous solutions, up to a water-ammonia molar ratio of ∼75:25. Here we prove that the reactivity of these liquid mixtures is rooted in peculiar microscopic patterns emerging at the H-bonding scale, where the highly orchestrated motion of 5 solvating molecules modulates proton transfer events through local electric fields. This study demonstrates that the reaction of water with NH3 is catalyzed by a small cluster of water molecules, in which an H atom possesses a high local electric field, much like the effect observed in catalysis by water droplets [ PNAS 2023, 120, e2301206120].

5.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37154276

RESUMO

Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.

6.
J Phys Chem Lett ; 13(42): 9889-9894, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255376

RESUMO

Here we prove that, in addition to temperature and pressure, another important thermodynamic variable permits the exploration of the phase diagram of ammonia: the electric field. By means of (path integral) ab initio molecular dynamics simulations, we predict that, upon applying intense electric fields on ammonia, the electrofreezing phenomenon occurs, leading the liquid toward a novel ferroelectric solid phase. This study proves that electric fields can generally be exploited as the access key to otherwise-unreachable regions in phase diagrams, unveiling the existence of new condensed-phase structures. Furthermore, the reported findings have manifold practical implications, from the safe storage and transportation of ammonia to the understanding of the solid structures this compound forms in planetary contexts.


Assuntos
Amônia , Simulação de Dinâmica Molecular , Amônia/química , Termodinâmica , Temperatura , Eletricidade
7.
Phys Chem Chem Phys ; 24(35): 21372-21380, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36043859

RESUMO

Liver cirrhosis is among the leading causes of death worldwide. Because of its asymptomatic evolution, timely diagnosis of liver cirrhosis via non-invasive techniques is currently under investigation. Among the diagnostic methods employing volatile organic compounds directly detectable from breath, sensing of limonene (C10H16) represents one of the most promising strategies for diagnosing alcohol liver diseases, including cirrhosis. In the present work, by means of state-of-the-art Density Functional Theory calculations including the U correction, we present an investigation on the sensing capabilities of a chromium-oxide-doped graphene (i.e., Cr2O3-graphene) structure toward limonene detection. In contrast with other structures such as g-triazobenzol (g-C6N6) monolayers and germanane, which revealed their usefulness in detecting limonene via physisorption, the proposed Cr2O3-graphene heterostructure is capable of undergoing chemisorption upon molecular approaching of limonene over its surface. In fact, a high adsorption energy is recorded (∼-1.6 eV). Besides, a positive Moss-Burstein effect is observed upon adsorption of limomene on the Cr2O3-graphene heterostructure, resulting in a net increase of the bandgap (∼50%), along with a sizeable shift of the Fermi level toward the conduction band. These findings pave the way toward the experimental validation of such predictions and the employment of Cr2O3-graphene heterostructures as sensors of key liver cirrhosis biomarkers.


Assuntos
Grafite , Adsorção , Diagnóstico Precoce , Grafite/química , Humanos , Limoneno , Cirrose Hepática/diagnóstico
8.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892991

RESUMO

The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.

9.
Phys Chem Chem Phys ; 23(45): 25649-25657, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34782902

RESUMO

Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (∼50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V Å-1). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V Å-1) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm-1) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.

10.
Phys Chem Chem Phys ; 23(42): 24403-24412, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693952

RESUMO

Levofloxacin is an extensively employed broad-spectrum antibiotic belonging to the fluoroquinolone class. Despite the extremely wide usage of levofloxacin for a plethora of diseases, the molecular characterization of this antibiotic appears quite poor in the literature. Moreover, the acid-base properties of levofloxacin - crucial for the design of efficient removal techniques from wastewaters - have never extensively been investigated so far. Here we report on a study on the behavior of levofloxacin under standard and diverse pH conditions in liquid water by synergistically employing static quantum-mechanical calculations along with experimental speciation studies. Furthermore, with the aim of characterizing the dynamics of the water solvation shells as well as the protonation and deprotonation mechanisms, here we present the unprecedented quantum-based simulation of levofloxacin in aqueous environments by means of state-of-the-art density-functional-theory-based molecular dynamics. This way, we prove the cooperative role played by the aqueous hydration shells in assisting the proton transfer events and, more importantly, the key place held by the nitrogen atom binding the methyl group of levofloxacin in accepting excess protons eventually present in water. Finally, we also quantify the energetic contribution associated with the presence of a H-bond internal to levofloxacin which, on the one hand, stabilizes the ground-state molecular structure of this antibiotic and, on the other, hinders the first deprotonation step of this fluoroquinolone. Among other things, the synergistic employment of quantum-based calculations and speciation experiments reported here paves the way toward the development of targeted removal approaches of drugs from wastewaters.


Assuntos
Teoria da Densidade Funcional , Levofloxacino/química , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Conformação Molecular , Água/química
11.
ACS Omega ; 6(22): 14447-14457, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124467

RESUMO

Examination of thermal decomposition of street samples of cocaine and methamphetamine shows that typical products detected in previous studies are accompanied by a wide palette of simple volatile compounds easily detectable by spectral techniques. These molecules increase smoke toxicity and their spectral detection can be potentially used for identification of drug samples by well-controlled laboratory thermolysis in temperature progression. In our study, street samples of cocaine and methamphetamine have been thermolyzed under vacuum over the temperature range of 350-650 °C. The volatile products (CO, HCN, CH4, C2H4, etc.) have been monitored by high-resolution Fourier-transform infrared (FTIR) spectrometry in this temperature range. The decomposition mechanism has been additionally examined theoretically by quantum-chemical calculations for the highest temperature achieved experimentally in our study and beyond. Prior to analysis, the street samples have also been characterized by FTIR, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and melting point determination.

13.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924594

RESUMO

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


Assuntos
Formamidas/química , Timina/química , Origem da Vida , Uracila/química
14.
Adv Mater ; 33(17): e2007486, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33759260

RESUMO

Flexible, biocompatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented, which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33 ) of up to 9.8 pC N-1 , they exhibit immense piezoelectric voltage constants (g33 ) up to 2 V m N-1 . Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.


Assuntos
Materiais Biocompatíveis , Eletricidade , Oligopeptídeos
15.
J Phys Chem A ; 124(51): 10856-10869, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33306380

RESUMO

Intense static electric fields can strongly perturb chemical bonds and induce frequency shifts of the molecular vibrations in the so-called vibrational Stark effect. Based on a density functional theory (DFT) approach, here, we report a detailed investigation of the influence of oriented external electric fields (OEEFs) on the dipole moment and infrared (IR) spectrum of the nonpolar centrosymmetric indigo molecule. When an OEEF as intense as ∼0.1 V Å-1 is applied, several modifications in the IR spectrum are observed. Besides the notable frequency shift of some modes, we observe the onset of new bands-forbidden by the selection rules in the zero-field case. Such a neat field-induced modification of the vibrational selection rules, and the subsequent variations of the peaks' intensities in the IR spectrum, paves the way toward the design of smart tools employing centrosymmetric molecules as proxies for mapping local electric fields. In fact, here, we show that the ratio between the IR and the Raman intensities of selected modes is proportional to the square of the local field. This indicator can be used to quantitatively measure local fields, not only in condensed matter systems under standard conditions but also in field-emitting-tip apparatus.

16.
J Phys Chem Lett ; 11(21): 8983-8988, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33035059

RESUMO

Proton transfer in liquid water controls acid-base chemistry, crucial enzyme reactions, and the functioning of fuel cells. Externally applied static electric fields in water are capable of dissociating molecules and transferring protons across the H-bond network. However, the impact of nuclear quantum effects (NQEs) on these fundamental field-induced phenomena has not yet been reported. By comparing state-of-the-art ab initio molecular dynamics (AIMD) and path integral AIMD simulations of water under electric fields, I show that quantum delocalization of the proton lowers the molecular ionization threshold to approximately one-third. Moreover, also the water behavior as a protonic semiconductor is considerably modified by the inclusion of NQEs. In fact, when the quantum nature of the nuclei is taken into account, the proton conductivity is ∼50% larger. This work proves that NQEs sizably affect the protolysis phenomenon and proton transfer in room-temperature liquid water.

17.
Astrobiology ; 20(12): 1476-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32955922

RESUMO

Chemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system. Our experimental results show that one-pot impact-plasma-initiated synthesis of all the RNA canonical nucleobases and the simplest amino acid glycine is possible in this type of atmosphere in the presence of montmorillonite. This one-pot synthesis begins with de novo formation of hydrogen cyanide (HCN) and proceeds through intermediates such as cyanoacetylene and urea.


Assuntos
Glicina , Cianeto de Hidrogênio , Nucleotídeos , Atmosfera , Meio Ambiente Extraterreno
18.
Molecules ; 25(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722281

RESUMO

Intense electric fields applied on H-bonded systems are able to induce molecular dissociations, proton transfers, and complex chemical reactions. Nevertheless, the effects induced in heterogeneous molecular systems such as methanol-water mixtures are still elusive. Here we report on a series of state-of-the-art ab initio molecular dynamics simulations of liquid methanol-water mixtures at different molar ratios exposed to static electric fields. If, on the one hand, the presence of water increases the proton conductivity of methanol-water mixtures, on the other, it hinders the typical enhancement of the chemical reactivity induced by electric fields. In particular, a sudden increase of the protonic conductivity is recorded when the amount of water exceeds that of methanol in the mixtures, suggesting that important structural changes of the H-bond network occur. By contrast, the field-induced multifaceted chemistry leading to the synthesis of e.g., hydrogen, dimethyl ether, formaldehyde, and methane observed in neat methanol, in 75:25, and equimolar methanol-water mixtures, completely disappears in samples containing an excess of water and in pure water. The presence of water strongly inhibits the chemical reactivity of methanol.


Assuntos
Metanol/química , Água/química , Ligação de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , Eletricidade Estática
19.
Dalton Trans ; 49(19): 6302-6311, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32334418

RESUMO

Albeit arsenic As(iii) is a well-known carcinogenic contaminant, the modalities by which it interacts with living organisms are still elusive. Details pertaining to the binding properties of As(iii) by common nucleotides such as AMP, ADP and ATP are indeed mostly unknown. Here we present an investigation, conducted via experimental and quantum-based computational approaches, on the stability of the complexes formed by arsenic with those nucleotides. By means of potentiometric and calorimetric measurements, the relative stability of AMP, ADP and ATP has been evaluated as a function of the pH. It turns out that ATP forms more stable structures with As(iii) than ADP which, in turn, better chelates arsenic than AMP. Such a stability sequestration capability of arsenic (ATP > ADP > AMP) has been interpreted on a twofold basis via state-of-the-art ab initio molecular dynamics (AIMD) and metadynamics (MetD) simulations performed on aqueous solutions of As(iii) chelated by AMP and ATP. In fact, we demonstrate that ATP offers a larger number of effective binding sites than AMP, thus indicating a higher statistical probability for chelating arsenic. Moreover, an evaluation of the free energy associated with the interactions that As(iii) establishes with the nucleotide atoms responsible for the binding quantitatively proves the greater effectiveness of ATP as a chelating agent.


Assuntos
Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arsênio/metabolismo , Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Arsênio/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Potenciometria , Teoria Quântica , Termodinâmica
20.
Chem Res Toxicol ; 33(4): 967-974, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32180400

RESUMO

Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.


Assuntos
Arsênio/isolamento & purificação , Líquidos Corporais/química , Quelantes/química , Succímero/química , Arsênio/química , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA