Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Andrology ; 11(4): 698-709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36698249

RESUMO

BACKGROUND: Adenosine deaminase domain containing 2 (ADAD2) is a testis-specific protein composed of a double-stranded RNA binding domain and a non-catalytic adenosine deaminase domain. A recent study showed that ADAD2 is indispensable for the male reproduction in mice. However, the detailed functions of ADAD2 remain elusive. OBJECTIVES: This study aimed to investigate the cause of male sterility in Adad2 mutant mice and to understand the molecular functions of ADAD2. MATERIALS AND METHODS: Adad2 homozygous mutant mouse lines, Adad2-/- and Adad2Δ/Δ , were generated by CRISPR/Cas9. Western blotting and immunohistochemistry were used to reveal the expression and subcellular localization of ADAD2. Co-immunoprecipitation tandem mass spectrometry was employed to determine the ADAD2-interacting proteins in mouse testes. RNA-sequencing analyses were carried out to analyze the transcriptome and PIWI-interacting RNA (piRNA) populations in wildtype and Adad2 mutant testes. RESULTS: Adad2-/- and Adad2Δ/Δ mice exhibit male-specific sterility because of abnormal spermiogenesis. ADAD2 interacts with multiple RNA-binding proteins involved in piRNA biogenesis, including MILI, MIWI, RNF17, and YTHDC2. ADAD2 co-localizes and forms novel granules with RNF17 in spermatocytes. Ablation of ADAD2 impairs the formation of RNF17 granules, decreases the number of cluster-derived pachytene piRNAs, and increases expression of ping-pong-derived piRNAs. DISCUSSION AND CONCLUSION: In collaboration with RNF17 and other RNA-binding proteins in spermatocytes, ADAD2 directly or indirectly functions in piRNA biogenesis.


Assuntos
Adenosina Desaminase , RNA de Interação com Piwi , Animais , Masculino , Camundongos , RNA Interferente Pequeno/genética , Adenosina Desaminase/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
FASEB J ; 36(9): e22479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35920200

RESUMO

Meiosis has a principal role in sexual reproduction to generate haploid gametes in both sexes. During meiosis, the cell nucleus hosts a dynamic environment where some genes are transcriptionally activated, and some are inactivated at the same time. This becomes possible through subnuclear compartmentalization. The sex body, sequestering X and Y chromosomes during male meiosis and creating an environment for the meiotic sex chromosome inactivation (MSCI) is one of the best known and studied subnuclear compartments. Herein, we show that MRNIP forms droplet-like accumulations that fuse together to create a distinct subnuclear compartment that partially overlaps with the sex body chromatin during diplotene. We demonstrate that Mrnip-/- spermatocytes have impaired DNA double-strand break (DSB) repair, they display reduced sex body formation and defective MSCI. We show that Mrnip-/- undergoes critical meiocyte loss at the diplotene stage. Furthermore, we determine that DNA DSBs (induced by SPO11) and synapsis initiation (facilitated by SYCP1) precede Mrnip expression in testes. Altogether, our findings indicate that in addition to an emerging role in DNA DSB repair, MRNIP has an essential function in spermatogenesis during meiosis I by forming drop-like accumulations interacting with the sex body.


Assuntos
Espermatócitos , Espermatogênese , Animais , Cromatina/genética , Cromatina/metabolismo , Feminino , Fertilidade , Masculino , Meiose , Camundongos , Espermatócitos/metabolismo , Espermatogênese/genética , Cromossomo Y/genética
3.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471926

RESUMO

Infertility afflicts up to 15% of couples globally each year with men a contributing factor in 50% of these cases. Globozoospermia is a rare condition found in infertile men, which is characterized by defective acrosome biogenesis leading to the production of round-headed sperm. Here, we report that family with sequence similarity 209 (Fam209) is required for acrosome biogenesis in mouse sperm. FAM209 is a small transmembrane protein conserved among mammals. Loss of Fam209 results in fertility defects that are secondary to abnormalities in acrosome biogenesis during spermiogenesis, reminiscent of globozoospermia. Analysis of the FAM209 proteome identified DPY19L2, whose human orthologue is involved in the majority of globozoospermia cases. Although mutations in human and mouse Dpy19l2 have been shown to cause globozoospermia, no in vivo interacting partners of DPY19L2 have been identified until now. FAM209 colocalizes with DPY19L2 at the inner nuclear membrane to maintain the developing acrosome. Here, we identified FAM209 as the first interacting partner of DPY19L2, and the second protein that is essential for acrosome biogenesis that localizes to the inner nuclear membrane.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Fertilidade/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Espermatogênese/genética , Espermatozoides
4.
Biol Reprod ; 103(2): 183-194, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32588039

RESUMO

Developing a safe and effective male contraceptive remains a challenge in the field of medical science. Molecules that selectively target the male reproductive tract and whose targets are indispensable for male reproductive function serve among the best candidates for a novel non-hormonal male contraceptive method. To determine the function of these genes in vivo, mutant mice carrying disrupted testis- or epididymis-enriched genes were generated by zygote microinjection or electroporation of the CRISPR/Cas9 components. Male fecundity was determined by consecutively pairing knockout males with wild-type females and comparing the fecundity of wild-type controls. Phenotypic analyses of testis appearance and weight, testis and epididymis histology, and sperm movement were further carried out to examine any potential spermatogenic or sperm maturation defect in mutant males. In this study, we uncovered 13 testis- or epididymis-enriched evolutionarily conserved genes that are individually dispensable for male fertility in mice. Owing to their dispensable nature, it is not feasible to use these targets for the development of a male contraceptive.


Assuntos
Epididimo/metabolismo , Reprodução/genética , Testículo/metabolismo , Animais , Sistemas CRISPR-Cas , Edição de Genes , Masculino , Camundongos , Filogenia , Motilidade dos Espermatozoides/genética , Espermatogênese/genética
5.
Biol Reprod ; 103(2): 235-243, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32430498

RESUMO

Spermatogenesis is a complex developmental process that involves the proliferation of diploid cells, meiotic division, and haploid differentiation. Many genes are shown to be essential for male fertility using knockout (KO) mice; however, there still remain genes to be analyzed to elucidate their molecular mechanism and their roles in spermatogenesis. Calcium- and integrin-binding protein 1 (CIB1) is a ubiquitously expressed protein that possesses three paralogs: CIB2, CIB3, and CIB4. It is reported that Cib1 KO male mice are sterile due to impaired haploid differentiation. In this study, we discovered that Cib4 is expressed strongly in mouse and human testis and begins expression during the haploid phase of spermatogenesis in mice. To analyze the function of CIB4 in vivo, we generated Cib4 KO mice using the CRISPR/Cas9 system. Cib4 KO male mice are sterile due to impaired haploid differentiation, phenocopying Cib1 KO male mice. Spermatogenic cells isolated from seminiferous tubules demonstrate an essential function of CIB4 in the formation of the apical region of the sperm head. Further analysis of CIB4 function may shed light on the etiology of male infertility caused by spermatogenesis defects, and CIB4 could be a target for male contraceptives because of its dominant expression in the testis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Infertilidade Masculina/genética , Espermatogênese/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Haploidia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Testículo/metabolismo
6.
Biol Reprod ; 102(4): 975-983, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31916570

RESUMO

In mammals, more than 2000 genes are specifically or abundantly expressed in testis, but gene knockout studies revealed several are not individually essential for male fertility. Tesmin (Metallothionein-like 5; Mtl5) was originally reported as a testis-specific transcript that encodes a member of the cysteine-rich motif containing metallothionein family. Later studies showed that Tesmin has two splicing variants and both are specifically expressed in male and female germ cells. Herein, we clarified that the long (Tesmin-L) and short (Tesmin-S) transcript forms start expressing from spermatogonia and the spermatocyte stage, respectively, in testis. Furthermore, while Tesmin-deficient female mice are fertile, male mice are infertile due to arrested spermatogenesis at the pachytene stage. We were able to rescue the infertility with a Tesmin-L transgene, where we concluded that TESMIN-L is critical for meiotic completion in spermatogenesis and indispensable for male fertility.


Assuntos
Fertilidade/genética , Metalotioneína/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Azoospermia/congênito , Azoospermia/genética , Azoospermia/metabolismo , Células COS , Chlorocebus aethiops , Masculino , Meiose/genética , Metalotioneína/genética , Camundongos , Camundongos Knockout , Espermatócitos/metabolismo , Espermatogônias/metabolismo
7.
Biol Reprod ; 102(4): 852-862, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837139

RESUMO

The t-complex is defined as naturally occurring variants of the proximal third of mouse chromosome 17 and has been studied by mouse geneticists for decades. This region contains many genes involved in processes from embryogenesis to sperm function. One such gene, t-complex protein 11 (Tcp11), was identified as a testis-specific gene whose protein is present in elongating spermatids. Later work on Tcp11 localized TCP11 to the sperm surface and acrosome cap and implicated TCP11 as important for sperm capacitation through the cyclic AMP/Protein Kinase A pathway. Here, we show that TCP11 is cytoplasmically localized to elongating spermatids and absent from sperm. In the absence of Tcp11, male mice have severely reduced fertility due to a significant decrease in progressively motile sperm; however, Tcp11-null sperm continues to undergo tyrosine phosphorylation, a hallmark of capacitation. Interestingly, null sperm displays reduced PKA activity, consistent with previous reports. Our work demonstrates that TCP11 functions in elongated spermatids to confer proper motility in mature sperm.


Assuntos
Proteínas de Membrana/metabolismo , Capacitação Espermática/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Espermátides/metabolismo , Testículo/metabolismo
8.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201419

RESUMO

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Assuntos
Sistemas CRISPR-Cas , Fertilidade/genética , Edição de Genes , Regulação da Expressão Gênica/fisiologia , Testículo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 114(27): E5370-E5378, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630322

RESUMO

Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.


Assuntos
Dineínas/metabolismo , Proteínas/genética , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Cruzamentos Genéticos , Citoesqueleto/metabolismo , Feminino , Flagelos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Homozigoto , Humanos , Masculino , Camundongos , Microtúbulos/metabolismo , Mutação , Proteínas/fisiologia , Espermátides/metabolismo , Testículo/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(28): 7704-10, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357688

RESUMO

Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.


Assuntos
Fertilidade/genética , Testículo/metabolismo , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Feminino , Fertilização , Engenharia Genética , Genômica , Masculino , Camundongos , Camundongos Knockout , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA