Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 408(20): 4784-94, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20659759

RESUMO

The short-lived natural radionuclides (7)Be (T(1/2)=53 days), (234)Th(xs) (T(1/2)=24.1 days) and (210)Pb(xs) (T(1/2)=22.3 years), i.e. (234)Th and (210)Pb in excesses of that supported within particles by the decay of their parent isotopes, were analysed in suspended particulate matter (SPM) to study the particle dynamics in the Gironde fluvial estuarine system (France), strongly impacted by heavy metal pollution. From surveys of this land-ocean interface in 2006 and 2007, we established a times series of these radioisotopes and of their activity ratios ((7)Be/(210)Pb(xs) and (234)Th/(210)Pb(xs) ARs) in particles sampled under different hydrological conditions. The particulate (7)Be/(210)Pb(xs) AR varies along the fluvial estuarine system mainly due to variations in (7)Be activities, controlled by riverine, oceanic and atmospheric inputs and by resuspension of old (7)Be-deficient sediments. These processes vary with river discharge, tidal cycle and season. Therefore, seasonal particle transport processes can be described using variations of the SPM (7)Be/(210)Pb(xs) ARs. During high river discharge, the SPM (7)Be/(210)Pb(x) ARs decrease from river to the ocean. The turbidity maximum zone (TMZ) is dispersed and the particles, and the associated contaminants, are rapidly transported from river to coastal waters, without significant retention within the TMZ. During low river discharge, the TMZ intrudes into the fluvial estuary, and the lowest (7)Be/(210)Pb(x) ARs are observed there due to resuspension of (7)Be-deficient sediments. Away from the TMZ, from the middle to lower estuary, SPM (7)Be/(210)Pb(x) ARs increase, indicating that the particles have been recently tagged with (7)Be. We explain this trend as being caused by marine input of dissolved radionuclides, as traced by SPM (234)Th/(210)Pb(xs) ARs, followed by scavenging in the estuary. This result indicates that particle transport models based on (7)Be and trace-metal budgets must consider oceanic dissolved inputs as an additional source of (7)Be and, possibly, of contaminants to estuaries.


Assuntos
Berílio/análise , Radioisótopos de Chumbo/análise , Material Particulado/análise , Tório/análise , Ondas de Maré , Poluentes Radioativos da Água/análise , Monitoramento Ambiental/métodos , França , Água Doce/química , Cinética , Radioisótopos de Chumbo/química , Material Particulado/química , Traçadores Radioativos , Radioisótopos/análise , Chuva/química , Estações do Ano , Água do Mar/química , Movimentos da Água , Poluentes Radioativos da Água/química
2.
Appl Opt ; 42(15): 2623-34, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12776997

RESUMO

Variations of sediment type (grain size and refractive index) and changing illumination conditions affect the reflectance signal of coastal waters and limit the accuracy of sediment-concentration estimations from remote-sensing measurements. These effects are analyzed from numerous in situ remote-sensing measurements carried out in the Gironde and Loire Estuaries and then reduced and partly eliminated when reflectance ratios between the near infrared and the visible are considered. These ratios showed high correlation with the sediment concentration. On the basis of the obtained relationships, performing correspondence functions were established that allow an accurate estimation of suspended sediments in the estuaries from Système Probatoire d'Observation de la Terre, Landsat, and Sea-Viewing Wide Field-of-View Sensor data, independently of the date of acquisition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA