Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6667): eadf0834, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824647

RESUMO

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Assuntos
Encefalopatias , Córtex Cerebral , Neurônios , Feminino , Humanos , Recém-Nascido , Gravidez , Encefalopatias/genética , Córtex Cerebral/crescimento & desenvolvimento , Redes Reguladoras de Genes , Interneurônios/metabolismo , Neurônios/metabolismo , Análise de Célula Única , Masculino , Fatores de Risco
2.
Dev Cell ; 24(1): 26-40, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23273878

RESUMO

Polarization of mammalian neurons with a specified axon requires precise regulation of microtubule and actin dynamics in the developing neurites. Here we show that mammalian partition defective 3 (mPar3), a key component of the Par polarity complex that regulates the polarization of many cell types including neurons, directly regulates microtubule stability and organization. The N-terminal portion of mPar3 exhibits strong microtubule binding, bundling, and stabilization activity, which can be suppressed by its C-terminal portion via an intramolecular interaction. Interestingly, the intermolecular oligomerization of mPar3 is able to relieve the intramolecular interaction and thereby promote microtubule bundling and stabilization. Furthermore, disruption of this microtubule regulatory activity of mPar3 impairs its function in axon specification. Together, these results demonstrate a role for mPar3 in directly regulating microtubule organization that is crucial for neuronal polarization.


Assuntos
Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Microtúbulos/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Células COS , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular , Células Cultivadas , Citoesqueleto/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde , Hipocampo/citologia , Hipocampo/metabolismo , Imunoprecipitação , Camundongos , Microtúbulos/química , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais
3.
Neuron ; 63(2): 189-202, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19640478

RESUMO

Asymmetric cell division of radial glial progenitors produces neurons while allowing self-renewal; however, little is known about the mechanism that generates asymmetry in daughter cell fate specification. Here, we found that mammalian partition defective protein 3 (mPar3), a key cell polarity determinant, exhibits dynamic distribution in radial glial progenitors. While it is enriched at the lateral membrane domain in the ventricular endfeet during interphase, mPar3 becomes dispersed and shows asymmetric localization as cell cycle progresses. Either removal or ectopic expression of mPar3 prevents radial glial progenitors from dividing asymmetrically yet generates different outcomes in daughter cell fate specification. Furthermore, the expression level of mPar3 affects Notch signaling, and manipulations of Notch signaling or Numb expression suppress mPar3 regulation of radial glial cell division and daughter cell fate specification. These results reveal a critical molecular pathway underlying asymmetric cell division of radial glial progenitors in the mammalian neocortex.


Assuntos
Moléculas de Adesão Celular/metabolismo , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Neocórtex/crescimento & desenvolvimento , Neuroglia/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular , Divisão Celular/genética , Polaridade Celular/genética , Eletroporação , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Neocórtex/embriologia , Neuroglia/metabolismo , Plasmídeos , Gravidez , Receptores Notch/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia
4.
Nat Protoc ; 1(2): 532-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17406279

RESUMO

To obtain electrophysiological recordings in brain slices, sophisticated and expensive pieces of equipment can be used. However, costly microscope equipment with infrared differential interference contrast optics is not always necessary or even desirable. For instance, obtaining a randomized unbiased sample in a given preparation would be better accomplished if cells were not directly visualized before recording. In addition, some preparations require thick slices, and direct visualization is not possible. Here we describe a protocol for the 'blind patch clamp method' that we developed several years ago to perform electrophysiological recordings in mammalian brain slices using a standard patch clamp amplifier, dissecting microscope and recording chamber. Overall, it takes approximately 3-4 h to set up this procedure.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Animais , Córtex Cerebral/citologia , Ratos , Ratos Sprague-Dawley , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Transmissão Sináptica , Técnicas de Cultura de Tecidos
6.
J Neurovirol ; 8(2): 150-4, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11935467

RESUMO

To determine the role that the neuronal nicotinic acetylcholine receptor plays in the adsorption process of rabies virus (RV), adult dorsal root ganglion dissociated cultures were exposed to nicotinic agonists before being inoculated. The fixed strain of RV Challenge Virus Standard-11 (CVS-11) was used after being passaged in two different ways, in baby hamster kidney (BHK) cells and in adult mouse brain (MB). Carbachol and nicotine reduced the percentage of CVS-MB infected neurons, yet none of the agonists tested changed the proportion of CVS-BHK infected neurons. This result suggests that the RV phenotype changes depending on its replication environment and neuronal nicotinic acetylcholine receptors are preferentially used for infection by RV strains adapted to adult mouse brain but not to fibroblasts.


Assuntos
Neurônios Aferentes/virologia , Vírus da Raiva/crescimento & desenvolvimento , Vírus da Raiva/metabolismo , Raiva/virologia , Receptores Nicotínicos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/virologia , Carbacol/farmacologia , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Cricetinae , Fibroblastos/citologia , Fibroblastos/virologia , Gânglios Espinais/citologia , Rim/citologia , Camundongos , Camundongos Endogâmicos ICR , Neurônios Aferentes/citologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Raiva/tratamento farmacológico , Replicação Viral
7.
Brain Res Mol Brain Res ; 99(2): 102-13, 2002 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-11978401

RESUMO

We have previously reported that the lidocaine action is different between CNS and muscle batrachotoxin-modified Na+ channels [Salazar et al., J. Gen. Physiol. 107 (1996) 743-754; Brain Res. 699 (1995) 305-314]. In this study we examined lidocaine action on CNS Na+ currents, to investigate the mechanism of lidocaine action on this channel isoform and to compare it with that proposed for muscle Na+ currents. Na+ currents were measured with the whole cell voltage clamp configuration in stably transfected cells expressing the brain alpha-subunit (type IIA) by itself (alpha-brain) or together with the brain beta(1)-subunit (alphabeta(1)-brain), or the cardiac alpha-subunit (hH1) (alpha-cardiac). Lidocaine (100 microM) produced comparable levels of Na+ current block at positive potentials and of hyperpolarizing shift of the steady-state inactivation curve in alpha-brain and alphabeta(1)-brain Na+ currents. Lidocaine accelerated the rates of activation and inactivation, produced an hyperpolarizing shift in the steady-state activation curve and increased the current magnitude at negative potentials in alpha-brain but not in alphabeta(1)-brain Na+ currents. The lidocaine action in alphabeta(1)-brain resembled that observed in alpha-cardiac Na+ currents. The lidocaine-induced increase in current magnitude at negative potentials and the hyperpolarizing shift in the steady-state activation curve of alpha-brain, are novel effects and suggest that lidocaine treatment does not always lead to current reduction/block when it interacts with Na+ channels. The data are explained by using a modified version of the model proposed by Vedantham and Cannon [J. Gen. Physiol., 113 (1999) 7-16] in which we postulate that the difference in lidocaine action between alpha-brain and alphabeta(1)-brain Na+ currents could be explained by differences in the lidocaine action on the open channel state.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Locais/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Lidocaína/farmacologia , Neurônios/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células CHO , Sistema Nervoso Central/metabolismo , Cricetinae , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Modelos Neurológicos , Neurônios/metabolismo , Canais de Sódio/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA