Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4009, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817801

RESUMO

Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Fungi (Basel) ; 7(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946988

RESUMO

Accurate DNA replication and segregation is key to reproduction and cell viability in all organisms. Autonomously replicating sequence-binding factor 1 (Abf1) is a multifunctional protein that has essential roles in replication, transcription, and regional silencing in the model yeast Saccharomyces cerevisiae. In the opportunistic pathogenic fungus Candida glabrata, which is closely related to S. cerevisiae, these processes are important for survival within the host, for example, the regulation of transcription of virulence-related genes like those involved in adherence. Here, we describe that CgABF1 is an essential gene required for cell viability and silencing near the telomeres, where many adhesin-encoding genes reside. CgAbf1 mediated subtelomeric silencing depends on the 43 C-terminal amino acids. We also found that abnormal expression, depletion, or overexpression of Abf1, results in defects in nuclear morphology, nuclear segregation, and transit through the cell cycle. In the absence of ABF1, cells are arrested in G2 but start cycling again after 9 h, coinciding with the loss of cell viability and the appearance of cells with higher DNA content. Overexpression of CgABF1 causes defects in nuclear segregation and cell cycle progression. We suggest that these effects could be due to the deregulation of DNA replication.

3.
Genetics ; 210(1): 113-128, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002080

RESUMO

Adherence, an important virulence factor, is mediated by the EPA (Epithelial Adhesin) genes in the opportunistic pathogen Candida glabrata Expression of adhesin-encoding genes requires tight regulation to respond to harsh environmental conditions within the host. The majority of EPA genes are localized in subtelomeric regions regulated by subtelomeric silencing, which depends mainly on Rap1 and the Sir proteins. In vitro adhesion to epithelial cells is primarily mediated by Epa1. EPA1 forms a cluster with EPA2 and EPA3 in the right telomere of chromosome E (E-R). This telomere contains a cis-acting regulatory element, the protosilencer Sil2126 between EPA3 and the telomere. Interestingly, Sil2126 is only active in the context of its native telomere. Replacement of the intergenic regions between EPA genes in E-R revealed that cis-acting elements between EPA2 and EPA3 are required for Sil2126 activity when placed 32 kb away from the telomere (Sil@-32kb). Sil2126 contains several putative binding sites for Rap1 and Abf1, and its activity depends on these proteins. Indeed, Sil2126 binds Rap1 and Abf1 at its native position and also when inserted at -32 kb, a silencing-free environment in the parental strain. In addition, we found that Sil@-32kb and Sil2126 at its native position can physically interact with the intergenic regions between EPA1-EPA2 and EPA2-EPA3 respectively, by chromosome conformation capture assays. We speculate that Rap1 and Abf1 bound to Sil2126 can recruit the Silent Information Regulator complex, and together mediate silencing in this region, probably through the formation of a chromatin loop.


Assuntos
Candida glabrata/genética , Cromatina/genética , Proteínas Fúngicas/genética , Lectinas/genética , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Elementos Reguladores de Transcrição , Telômero/genética , Fatores de Transcrição/genética
4.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 451-462, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27965115

RESUMO

Genetic deletion of the essential GTPase Gpn1 or replacement of the endogenous gene by partial loss of function mutants in yeast is associated with multiple cellular phenotypes, including in all cases a marked cytoplasmic retention of RNA polymerase II (RNAPII). Global inhibition of RNAPII-mediated transcription due to malfunction of Gpn1 precludes the identification and study of other cellular function(s) for this GTPase. In contrast to the single Gpn protein present in Archaea, eukaryotic Gpn1 possesses an extension of approximately 100 amino acids at the C-terminal end of the GTPase domain. To determine the importance of this C-terminal extension in Saccharomyces cerevisiae Gpn1, we generated yeast strains expressing either C-terminal truncated (gpn1ΔC) or full-length ScGpn1. We found that ScGpn1ΔC was retained in the cell nucleus, an event physiologically relevant as gpn1ΔC cells contained a higher nuclear fraction of the RNAPII CTD phosphatase Rtr1. gpn1ΔC cells displayed an increased size, a delay in mitosis exit, and an increased sensitivity to the microtubule polymerization inhibitor benomyl at the cell proliferation level and two cellular events that depend on microtubule function: RNAPII nuclear targeting and vacuole integrity. These phenotypes were not caused by inhibition of RNAPII, as in gpn1ΔC cells RNAPII nuclear targeting and transcriptional activity were unaffected. These data, combined with our description here of a genetic interaction between GPN1 and BIK1, a microtubule plus-end tracking protein with a mitotic function, strongly suggest that the ScGpn1 C-terminal tail plays a critical role in microtubule dynamics and mitotic progression in an RNAPII-independent manner.


Assuntos
Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Benomilo/farmacologia , Viabilidade Microbiana , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Domínios Proteicos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Moduladores de Tubulina/farmacologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA