Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Biomed Pharmacother ; 176: 116768, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38795638

RESUMO

Antiviral medicines to treat COVID-19 are still scarce. Porphyrins and porphyrin derivatives (PDs) usually present broad-spectrum antiviral activity with low risk of resistance development. In fact, some PDs are clinically approved to be used in anti-cancer photodynamic therapy and repurposing clinically approved PDs might be an alternative to treat COVID-19. Here, we characterize the ability of temoporfin, verteporfin, talaporfin and redaporfin to inactivate SARS-CoV-2 infectious particles. PDs light-dependent and -independent effect on SARS-CoV-2 infectivity were evaluated. PDs photoactivation successfully inactivated SARS-CoV-2 with very low concentrations and light dose. However, only temoporfin and verteporfin inactivated SARS-CoV-2 in the dark, being verteporfin the most effective. PDs treatment reduced viral load in infected Caco-2 cells, while not inducing cytotoxicity. Furthermore, light-independent treatment with temoporfin and verteporfin act on early stages of viral infection. Using lipid vehicles as membrane models, we characterized PDs interaction to the viral envelope. Verteporfin presented the lowest IC50 for viral inactivation and the highest partition coefficients (Kp) towards lipid bilayers. Curiously, although temoporfin and redaporfin presented similar Kps, redaporfin did not present light-independent antiviral activity, and only temoporfin and verteporfin caused lipid membrane disorder. In fact, redaporfin is located closer to the bilayer surface, while temoporfin and verteporfin are located closer to the centre. Our results suggest that viral envelope affinity, with penetration and destabilization of the lipid bilayer, seems critical to mediate PDs antiviral activity. Altogether, these findings open new avenues for the off-label application of temoporfin and verteporfin in the systemic treatment of COVID-19.

2.
Fluids Barriers CNS ; 21(1): 45, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802930

RESUMO

Blood-brain barrier (BBB) peptide-shuttles (BBBpS) are able to translocate the BBB and reach the brain. Despite the importance of brain targeting in pharmacology, BBBpS are poorly characterized. Currently, their development relies on the empiric assumption that cell-penetrating peptides (CPPs), with proven ability to traverse lipid membranes, will likewise behave as a BBBpS. The relationship between CPPs/BBBpS remains elusive and, to the best of our knowledge, has not hitherto been subject to thorough experimental scrutiny. In this work, we have identified/quantified the main physicochemical properties of BBBpS and then searched for CPPs with these properties, hence potential BBBpS. The specific features found for BBBpS are: (i) small size, (ii) none or few aromatic residues, (iii) hydrophobic, and (iv) slight cationic nature. Then, we selected the 10 scoring best in an ordinary least squares analysis, and tested them in vitro and in vivo. Overall, we identified the molecular determinants for brain targeting by peptides, devised a methodology that can be used to assist in the design of peptides with potential brain penetration from amino acid residue sequences, and found four new BBBpS within the CPP library.


Assuntos
Barreira Hematoencefálica , Encéfalo , Peptídeos Penetradores de Células , Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Sistemas de Liberação de Medicamentos/métodos
3.
Biomed Pharmacother ; 174: 116573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613996

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of commonly targeted receptors. Unspecific chemotherapy is currently the main therapeutic option, with poor results. Another major challenge is the frequent appearance of brain metastasis (BM) associated with a significant decrease in patient overall survival. The treatment of BM is even more challenging due to the presence of the blood-brain barrier (BBB). Here, we present a dual-acting peptide (PepH3-vCPP2319) designed to tackle TNBC/BM, in which a TNBC-specific anticancer peptide (ACP) motif (vCPP2319) is joined to a BBB peptide shuttle (BBBpS) motif (PepH3). PepH3-vCPP2319 demonstrated selectivity and efficiency in eliminating TNBC both in monolayers (IC50≈5.0 µM) and in spheroids (IC50≈25.0 µM), with no stringent toxicity toward noncancerous cell lines and red blood cells (RBCs). PepH3-vCPP2319 was also able to cross the BBB in vitro and penetrate the brain in vivo, and was stable in serum with a half-life above 120 min. Tumor cell-peptide interaction is fast, with quick peptide internalization via clathrin-mediated endocytosis without membrane disruption. Upon internalization, the peptide is detected in the nucleus and the cytoplasm, indicating a multi-targeted mechanism of action that ultimately induces irreversible cell damage and apoptosis. In conclusion, we have designed a dual-acting peptide capable of brain penetration and TNBC cell elimination, thus expanding the drug arsenal to fight this BC subtype and its BM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Peptídeos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Feminino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Endocitose/efeitos dos fármacos
4.
Microb Pathog ; 189: 106607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437995

RESUMO

OBJECTIVES: The selected kyotorphin derivatives were tested to improve their antimicrobial and antibiofilm activity. The antimicrobial screening of the KTP derivatives were ascertained in the representative strains of bacteria, including Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. METHODS: Kyotorphin derivatives, KTP-NH2, KTP-NH2-DL, IbKTP, IbKTP-NH2, MetKTP-DL, MetKTP-LD, were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. Peptides were synthesized by standard solution or solid-phase peptide synthesis and purified using RP-HPLC, which resulted in >95 % purity, and were fully characterized by mass spectrometry and 1H NMR. The minimum inhibitory concentrations (MIC) determined for bacterial strains were between 20 and 419 µM. The direct effect of IbKTP-NH2 on bacterial cells was imaged using scanning electron microscopy. The absence of toxicity, high survival after infection and an increase in the hemocytes count was evaluated by injections of derivatives in Galleria mellonella larvae. Proteomics analyses of G. mellonella hemolymph were performed to investigate the underlying mechanism of antibacterial activity of IbKTP-NH2 at MIC. RESULTS: IbKTP-NH2 induces morphological changes in bacterial cell, many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and virulence were up-regulated after the treatment of G. mellonella with IbKTP-NH2. CONCLUSION: We suggest that this derivative, in addition to its physical activity on the bacterial membranes, can elicit a cellular and humoral immune response, therefore, it could be considered for biomedical applications.


Assuntos
Anti-Infecciosos , Endorfinas , Mariposas , Animais , Proteômica , Mariposas/microbiologia , Antibacterianos/farmacologia , Larva , Peptídeos
5.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 918-927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494444

RESUMO

BACKGROUND: Studies on early abstinence suggest that cognitive function is significantly reduced in the first year of abstinence, which raises the question of whether it is relevant to early relapse in patients with substance use disorders. This study investigates the extent to which impairments in executive function and memory predict alcohol relapse in patients with alcohol use disorder (AUD). Understanding these relationships is crucial for improving therapeutic approaches to prevent relapse in patients with AUD. METHODS: We selected 116 adult patients (79 male and 37 female) diagnosed with AUD based on DSM-5 criteria, all of whom were undergoing alcohol detoxification treatment. A comprehensive array of neuropsychological tests was administered to assess global cognition, memory, and executive functions. Patients' alcohol use was monitored monthly during a 6-month follow-up period. Logistic regression and Cox regression were used to explore the relationship between cognitive function and the likelihood of alcohol relapse. RESULTS: Impairments in global cognition, semantic and phonemic fluency, cognitive flexibility, and learning ability during detoxification were significant predictors of relapse in AUD patients, showing similar predictive values at both 3 and 6 months post-treatment. An abnormal Montreal Cognitive Assessment (MoCA) score increased the risk of relapse by 123% (HR: 2.227), and impairments in both semantic and phonemic fluency each increased the risk by 142% (HR: 2.423). Additionally, abnormal performance on the MoCA, Trail Making Test Part B (TMT-B), and California Verbal Learning Test (CVLT) was associated with a higher number of drinking days at 3 months (IRR: 3.764; IRR: 2.237; IRR: 2.738, respectively) and abnormal MoCA and TMT-B scores at 6 months (IRR: 2.451; IRR: 1.859, respectively). CONCLUSIONS: The MoCA test is a valuable tool for predicting relapse risk in AUD patients undergoing detoxification treatment, with similar predictive value for relapse at 3 or 6 months. Learning ability needs to be assessed and their impairments considered in the treatment of AUD patients. Future research should explore strategies for managing patients with impairments in memory and learning ability to enhance treatment effectiveness and prevent relapse.

6.
ACS Infect Dis ; 9(10): 1889-1900, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37669146

RESUMO

The formation of biofilms is a common virulence factor that makes bacterial infections difficult to treat and a major human health problem. Biofilms are bacterial communities embedded in a self-produced matrix of extracellular polymeric substances (EPS). In this work, we show that vCPP2319, a polycationic peptide derived from the capsid protein of Torque teno douroucouli virus, is active against preformed Staphylococcus aureus biofilms produced by both a reference strain and a clinical strain isolated from a diabetic foot infection, mainly by the killing of biofilm-embedded bacteria. The direct effect of vCPP2319 on bacterial cells was imaged using atomic force and confocal laser scanning microscopy, showing that the peptide induces morphological changes in bacterial cells and membrane disruption. Importantly, vCPP2319 exhibits low toxicity toward human cells and high stability in human serum. Since vCPP2319 has a limited effect on the biofilm EPS matrix itself, we explored a combined effect with α-amylase (EC 3.2.1.1), an EPS matrix-degrading enzyme. In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. Nonetheless, quantitative analysis of bioimaging data shows that vCPP2319 partially restores biofilm compactness after digestion of the polysaccharides, probably due to electrostatic cross-bridging of the matrix nucleic acids, which explains why α-amylase fails to improve the antibacterial action of the peptide.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Peptídeos Antimicrobianos , Biofilmes , Infecções Estafilocócicas/microbiologia , alfa-Amilases/farmacologia , alfa-Amilases/uso terapêutico
7.
Front Vet Sci ; 10: 1236136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711439

RESUMO

Introduction: Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results: Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion: In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.

8.
Pharmaceutics ; 15(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765284

RESUMO

Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.

9.
Toxicology ; 494: 153588, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419273

RESUMO

The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300 µM within 24 h, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4 h exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.


Assuntos
Neuroblastoma , Tetra-Hidroisoquinolinas , Humanos , Antídotos/química , Células HEK293 , Oximas/toxicidade , Oximas/química , Organofosfatos/química , Piridinas , Apoptose , Transdução de Sinais , Piperidinas , Tetra-Hidroisoquinolinas/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-37365421

RESUMO

The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.

11.
Life (Basel) ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37109417

RESUMO

Inflammation is essential in the protection of the organism and wound repair, but in cases of chronic inflammation can also cause microvasculature deterioration. Thus, inflammation monitorization studies are important to test potential therapeutics. The intravital microscopy (IVM) technique monitors leukocyte trafficking in vivo, being a commonly used procedure to report systemic conditions. Although the cremaster muscle, an established protocol for IVM, may affect the hemodynamics because of its surgical preparation, only male animals are used, and longitudinal studies over time are not feasible. Thinking how this impacts future studies, our aim is to understand if the IVM technique can be successfully performed using the ear lobe instead of the cremaster muscle. Elevated IL-1ß plasmatic concentrations confirmed the systemic inflammation developed in a diabetic animal model, while the elevated number of adherent and rolling leukocytes in the ear lobe allowed for the same conclusion. Thus, this study demonstrates that albeit its thickness, the ear lobe protocol for IVM is efficient, non-invasive, more reliable, cost-effective and timesaving.

12.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903528

RESUMO

Cell viability and metabolic activity are ubiquitous parameters used in biochemistry, molecular biology, and biotechnological studies. Virtually all toxicology and pharmacological projects include at some point the evaluation of cell viability and/or metabolic activity. Among the methods used to address cell metabolic activity, resazurin reduction is probably the most common. At variance with resazurin, resorufin is intrinsically fluorescent, which simplifies its detection. Resazurin conversion to resorufin in the presence of cells is used as a reporter of metabolic activity of cells and can be detected by a simple fluorometric assay. UV-Vis absorbance is an alternative technique but is not as sensitive. In contrast to its wide empirical "black box" use, the chemical and cell biology fundamentals of the resazurin assay are underexplored. Resorufin is further converted to other species, which jeopardizes the linearity of the assays, and the interference of extracellular processes has to be accounted for when quantitative bioassays are aimed at. In this work, we revisit the fundamentals of metabolic activity assays based on the reduction of resazurin. Deviation to linearity both in calibration and kinetics, as well as the existence of competing reactions for resazurin and resorufin and their impact on the outcome of the assay, are addressed. In brief, fluorometric ratio assays using low resazurin concentrations obtained from data collected at short time intervals are proposed to ensure reliable conclusions.


Assuntos
Oxazinas , Xantenos , Indicadores e Reagentes , Oxazinas/química , Xantenos/química , Fluorometria
13.
Sci Rep ; 13(1): 4837, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964198

RESUMO

Antibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs. Most rabbit light chains have an extra disulfide bridge, that links the variable and constant domains, between Cys80 and Cys171, which is not found in the human or mouse. Thus, to develop a new generation of ADCs, we explored the potential of rabbit-derived VL-single-domain antibody scaffolds (sdAbs) to selectively conjugate a payload to Cys80. Hence, a rabbit sdAb library directed towards canine non-Hodgkin lymphoma (cNHL) was subjected to in vitro and in vivo phage display. This allowed the identification of several highly specific VL-sdAbs, including C5, which specifically target cNHL cells in vitro and present promising in vivo tumor uptake. C5 was selected for SN-38 site-selective payload conjugation through its exposed free Cys80 to generate a stable and homogenous C5-DAB-SN-38. C5-DAB-SN-38 exhibited potent cytotoxicity activity against cNHL cells while inhibiting DNA-TopoI activity. Overall, our strategy validates a platform to develop a novel class of ADCs that combines the benefits of rabbit VL-sdAb scaffolds and the canine lymphoma model as a powerful framework for clinically translation of novel therapeutics for cancer.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Cães , Coelhos , Camundongos , Humanos , Imunoconjugados/farmacologia , Anticorpos Monoclonais/farmacologia , Irinotecano , Neoplasias/terapia , Antígenos , Antineoplásicos/farmacologia
14.
J Pept Sci ; 29(6): e3470, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36537560

RESUMO

From the biological point of view, bacterial biofilms are communities of bacteria embedded in a self-produced gel matrix composed of polysaccharides, DNA, and proteins. Considering the biophysical point of view, the biofilm matrix is a highly dense, crowded medium that imposes constraints to solute diffusion, depending on the size, conformational dynamics, and net charge. From the pharmacological point of view, biofilms are additional difficulties to drug development as heterogeneity in oxygen and nutrient distribution, and consequently, heterogeneity in bacterial metabolic status leads to recalcitrance. For peptide scientists, biofilms are both a challenge and an opportunity. Biofilms can be intruded by peptides, revealing important biological, biophysical, and pharmacological insights. Peptides can be engineered for different sizes, flexibilities, and net charges, unravelling the determinants of diffusion; they kill bacteria by lysis, overcoming the hurdles of metabolic status heterogeneity, and they are able to kill bacteria in the biofilm core, leaving the matrix intact, that is, without causing bacterial biofilm dispersion as side effect. This concise review addresses the knowledge reached while interrogating bacterial biofilms with peptides and other reporter molecules, and the advances therefrom in biology, biophysics, and drug development.


Assuntos
Peptídeos Antimicrobianos , Biofilmes , Bactérias , Peptídeos/farmacologia , Polissacarídeos
15.
Chembiochem ; 24(4): e202200602, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454659

RESUMO

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Temperatura , Peptídeos/química , Membrana Celular/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética
16.
ACS Pharmacol Transl Sci ; 5(11): 1156-1168, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407952

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.

17.
J Antimicrob Chemother ; 77(12): 3256-3264, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171717

RESUMO

BACKGROUND: Infections caused by bacterial biofilms are very difficult to treat. The use of currently approved antibiotics even at high dosages often fails, making the treatment of these infections very challenging. Novel antimicrobial agents that use distinct mechanisms of action are urgently needed. OBJECTIVES: To explore the use of [G1K,K8R]cGm, a designed cyclic analogue of the antimicrobial peptide gomesin, as an alternative approach to treat biofilm infections. METHODS: We studied the activity of [G1K,K8R]cGm against biofilms of Staphylococcus aureus, a pathogen associated with several biofilm-related infections. A combination of atomic force and real-time confocal laser scanning microscopies was used to study the mechanism of action of the peptide. RESULTS: The peptide demonstrated potent activity against 24 h-preformed biofilms through a concentration-dependent ability to kill biofilm-embedded cells. Mechanistic studies showed that [G1K,K8R]cGm causes morphological changes on bacterial cells and permeabilizes their membranes across the biofilm with a half-time of 65 min. We also tested an analogue of [G1K,K8R]cGm without disulphide bonds, and a linear unfolded analogue, and found both to be inactive. CONCLUSIONS: The results suggest that the 3D structure of [G1K,K8R]cGm and its stabilization by disulphide bonds are essential for its antibacterial and antibiofilm activities. Moreover, our findings support the potential application of this stable cyclic antimicrobial peptide to fight bacterial biofilms.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Biofilmes , Infecções Estafilocócicas/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/farmacologia , Bactérias , Dissulfetos
18.
ACS Chem Biol ; 17(7): 1831-1843, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500279

RESUMO

Paramyxoviruses are enveloped viruses harboring a negative-sense RNA genome that must enter the host's cells to replicate. In the case of the parainfluenza virus, the cell entry process starts with the recognition and attachment to target receptors, followed by proteolytic cleavage of the fusion glycoprotein (F) protein, exposing the fusion peptide (FP) region. The FP is responsible for binding to the target membrane, and it is believed to play a crucial role in the fusion process, but the mechanism by which the parainfluenza FP (PIFP) promotes membrane fusion is still unclear. To elucidate this matter, we performed biophysical experimentation of the PIFP in membranes, together with coarse grain (CG) and atomistic (AA) molecular dynamics (MD) simulations. The simulation results led to the pinpointing of the most important PIFP amino acid residues for membrane fusion and show that, at high concentrations, the peptide induces the formation of a water-permeable porelike structure. This structure promotes lipid head intrusion and lipid tail protrusion, which facilitates membrane fusion. Biophysical experimental results validate these findings, showing that, depending on the peptide/lipid ratio, the PIFP can promote fusion and/or membrane leakage. Our work furthers the understanding of the PIFP-induced membrane fusion process, which might help foster development in the field of viral entry inhibition.


Assuntos
Fusão de Membrana , Infecções por Paramyxoviridae , Humanos , Lipídeos , Fusão de Membrana/fisiologia , Peptídeos , Proteínas Virais de Fusão/metabolismo
19.
Pharmaceutics ; 14(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456572

RESUMO

Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.

20.
Front Microbiol ; 13: 835677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330773

RESUMO

The emergence of antimicrobial resistance (AMR) is rapidly increasing and it is one of the significant twenty-first century's healthcare challenges. Unfortunately, the development of effective antimicrobial agents is a much slower and complex process compared to the spread of AMR. Consequently, the current options in the treatment of AMR are limited. One of the main alternatives to conventional antibiotics is the use of antibody-antibiotic conjugates (AACs). These innovative bioengineered agents take advantage of the selectivity, favorable pharmacokinetic (PK), and safety of antibodies, allowing the administration of more potent antibiotics with less off-target effects. Although AACs' development is challenging due to the complexity of the three components, namely, the antibody, the antibiotic, and the linker, some successful examples are currently under clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA