Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114021, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564335

RESUMO

The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.


Assuntos
Envelhecimento , Genoma , Longevidade , Ouriços-do-Mar , Animais , Longevidade/genética , Envelhecimento/genética , Ouriços-do-Mar/genética , Genômica/métodos
2.
Sci Rep ; 13(1): 21056, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030690

RESUMO

Ocean warming favors pelagic tunicates, such as salps, that exhibit increasingly frequent and rapid population blooms, impacting trophic dynamics and composition and human marine-dependent activities. Salp blooms are a result of their successful reproductive life history, alternating seasonally between asexual and sexual protogynous (i.e. sequential) hermaphroditic stages. While predicting future salp bloom frequency and intensity relies on an understanding of the transitions during the sexual stage from female through parturition and subsequent sex change to male, these transitions have not been explored at the molecular level. Here we report the development of the first complete genome of S. thompsoni and the North Atlantic sister species S. aspera. Genome and comparative analyses reveal an abundance of repeats and G-quadruplex (G4) motifs, a highly stable secondary structure, distributed throughout both salp genomes, a feature shared with other tunicates that perform alternating sexual-asexual reproductive strategies. Transcriptional analyses across sexual reproductive stages for S. thompsoni revealed genes associated with male sex differentiation and spermatogenesis are expressed as early as birth and before parturition, inconsistent with previous descriptions of sequential sexual differentiation in salps. Our findings suggest salp are poised for reproductive success at birth, increasing the potential for bloom formation as ocean temperatures rise.


Assuntos
Genoma , Urocordados , Recém-Nascido , Masculino , Feminino , Humanos , Animais , Reprodução/genética , Processos de Determinação Sexual , Perfilação da Expressão Gênica , Urocordados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA