Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mov Disord ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881298

RESUMO

BACKGROUND: Stepwise functional connectivity (SFC) detects whole-brain functional couplings of a selected region of interest at increasing link-step topological distances. OBJECTIVE: This study applied SFC to test the hypothesis that stepwise architecture propagating from the disease epicenter would shape patterns of brain atrophy in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). METHODS: Thirty-six patients with PSP-RS and 44 age-matched healthy control subjects underwent brain magnetic resonance imaging on a 3-T scanner. The disease epicenter was defined as the peak of atrophy observed in an independent cohort of 13 cases with postmortem confirmation of PSP pathology and used as seed region for SFC analysis. First, we explored SFC rearrangements in patients with PSP-RS, as compared with age-matched control subjects. Subsequently, we tested SFC architecture propagating from the disease epicenter as a determinant of brain atrophy distribution. RESULTS: The disease epicenter was identified in the left midbrain tegmental region. Compared with age-matched control subjects, patients with PSP-RS showed progressively widespread decreased SFC of the midbrain with striatal and cerebellar regions through direct connections and sensorimotor cortical regions through indirect connections. A correlation was found between average link-step distance from the left midbrain in healthy subjects and brain volumes in patients with PSP-RS (r = 0.38, P < 0.001). CONCLUSIONS: This study provides comprehensive insights into the topology of functional network rearrangements in PSP-RS and demonstrates that the brain architectural topology, as described by SFC propagating from the disease epicenter, shapes the pattern of atrophic changes in PSP-RS. Our findings support the view of a network-based pathology propagation in this primary tauopathy. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Neurogenetics ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592608

RESUMO

We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.Based on the genotype-phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.

3.
J Neurol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597943

RESUMO

BACKGROUND: Semantic behavioral variant frontotemporal dementia (sbvFTD) is a neurodegenerative condition presenting with specific behavioral and semantic derangements and predominant atrophy of the right anterior temporal lobe (ATL). The objective was to evaluate clinical, neuropsychological, neuroimaging, and genetic features of an Italian sbvFTD cohort, defined according to recently proposed guidelines, compared to semantic variant primary progressive aphasia (svPPA) and behavioral variant FTD (bvFTD) patients. METHODS: Fifteen sbvFTD, sixty-three bvFTD, and twenty-five svPPA patients and forty controls were enrolled. Patients underwent clinical, cognitive evaluations, and brain MRI. Symptoms of bvFTD patients between onset and first visit were retrospectively recorded and classified as early and late. Grey matter atrophy was investigated using voxel-based morphometry. RESULTS: sbvFTD experienced early criteria-specific symptoms: world, object and person-specific semantic loss (67%), complex compulsions and rigid thought (60%). Sequentially, more behavioral symptoms emerged (apathy/inertia, loss of empathy) along with non-criteria-specific symptoms (anxiety, suspiciousness). sbvFTD showed sparing of attentive/executive functions, especially compared to bvFTD and better language functions compared to svPPA. All sbvFTD patients failed at the famous face recognition test and more than 80% failed in understanding written metaphors and humor. At MRI, sbvFTD had predominant right ATL atrophy, almost specular to svPPA. Three sbvFTD patients presented pathogenic genetic variants. CONCLUSION: We replicated the application of sbvFTD diagnostic guidelines in an independent Italian cohort, demonstrating that the presence of person-specific semantic knowledge loss and mental rigidity, along with preserved executive functions and a predominant right ATL atrophy with sparing of frontal lobes, should prompt a diagnosis of sbvFTD.

4.
J Neurol ; 271(4): 2031-2041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189921

RESUMO

OBJECTIVES: To assess whether dual-task gait/balance training with action observation training (AOT) and motor imagery (MI) ameliorates cognitive performance and resting-state (RS) brain functional connectivity (FC) in Parkinson's disease (PD) patients with postural instability and gait disorders (PIGD). METHODS: 21 PD-PIGD patients were randomized into 2 groups: (1) DUAL-TASK + AOT-MI group performed a 6-week training consisting of AOT-MI combined with practicing observed-imagined gait and balance exercises; and (2) DUAL-TASK group performed the same exercises combined with landscape-videos observation. At baseline and after training, all patients underwent a computerized cognitive assessment, while 17 patients had also RS-fMRI scans. Cognitive and RS-FC changes (and their relationships) over time within and between groups were assessed. RESULTS: After training, all PD-PIGD patients improved accuracy in a test assessing executive-attentive (mainly dual-task) skills. DUAL-TASK + AOT-MI patients showed increased RS-FC within the anterior salience network (aSAL), and reduced RS-FC within the anterior default mode network (aDMN), right executive control network and precuneus network. DUAL-TASK patients showed increased RS-FC within the visuospatial network, only. Group × Time interaction showed that, compared to DUAL-TASK group, DUAL-TASK + AOT-MI cases had reduced RS-FC within the aDMN, which correlated with higher accuracy in a dual-task executive-attentive test. CONCLUSIONS: In PD-PIGD patients, both trainings promote cognitive improvement and brain functional reorganization. DUAL-TASK + AOT-MI training induced specific functional reorganization changes of extra-motor brain networks, which were related with improvement in dual-task performance.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Cognição , Encéfalo , Função Executiva , Marcha , Imageamento por Ressonância Magnética , Equilíbrio Postural
5.
Neurology ; 102(2): e207946, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165325

RESUMO

BACKGROUND AND OBJECTIVES: There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS: In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS: One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION: MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Gânglios da Base , Encéfalo/diagnóstico por imagem , Difusão , Neurônios Motores , Masculino , Feminino
6.
Mol Psychiatry ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414925

RESUMO

Multifactorial models integrating brain variables at multiple scales are warranted to investigate aging and its relationship with neurodegeneration. Our aim was to evaluate how aging affects functional connectivity of pivotal regions of the human brain connectome (i.e., hubs), which represent potential vulnerability 'stations' to aging, and whether such effects influence the functional and structural changes of the whole brain. We combined the information of the functional connectome vulnerability, studied through an innovative graph-analysis approach (stepwise functional connectivity), with brain cortical thinning in aging. Using data from 128 cognitively normal participants (aged 20-85 years), we firstly investigated the topological functional network organization in the optimal healthy condition (i.e., young adults) and observed that fronto-temporo-parietal hubs showed a highly direct functional connectivity with themselves and among each other, while occipital hubs showed a direct functional connectivity within occipital regions and sensorimotor areas. Subsequently, we modeled cortical thickness changes over lifespan, revealing that fronto-temporo-parietal hubs were among the brain regions that changed the most, whereas occipital hubs showed a quite spared cortical thickness across ages. Finally, we found that cortical regions highly functionally linked to the fronto-temporo-parietal hubs in healthy adults were characterized by the greatest cortical thinning along the lifespan, demonstrating that the topology and geometry of hub functional connectome govern the region-specific structural alterations of the brain regions.

8.
Front Neurosci ; 17: 1204504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383099

RESUMO

Objectives: We report the clinical presentation and evolution of a case with a novel Progranulin gene (GRN) mutation and non-fluent language disturbances at onset. Materials and methods: A 60 year-old, white patient was followed due to a history of language disturbances. Eighteen months after onset, the patient underwent FDG positron emission tomography (PET), and at month 24 was hospitalized to perform neuropsychological evaluation, brain 3 T MRI, lumbar puncture for cerebrospinal fluid (CSF) analysis, and genotyping. At month 31, the patient repeated the neuropsychological evaluation and brain MRI. Results: At onset the patient complained prominent language production difficulties, such as effortful speech and anomia. At month 18, FDG-PET showed left fronto-temporal and striatal hypometabolism. At month 24, the neuropsychological evaluation reported prevalent speech and comprehension deficits. Brain MRI reported left fronto-opercular and striatal atrophy, and left frontal periventricular white matter hyperintensities (WMHs). Increased CSF total tau level was observed. Genotyping revealed a new GRN c.1018delC (p.H340TfsX21) mutation. The patient received a diagnosis of non-fluent variant of primary progressive aphasia (nfvPPA). At month 31, language deficits worsened, together with attention and executive functions. The patient presented also with behavioral disturbances, and a progressive atrophy in the left frontal-opercular and temporo-mesial region. Discussion and conclusion: The new GRN p.H340TfsX21 mutation resulted in a case of nfvPPA characterized by fronto-temporal and striatal alterations, typical frontal asymmetric WMHs, and a fast progression toward a widespread cognitive and behavioral impairment, which reflects a frontotemporal lobar degeneration. Our findings extend the current knowledge of the phenotypic heterogeneity among GRN mutation carriers.

9.
Front Neurosci ; 17: 1133758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090799

RESUMO

Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.

10.
Neurology ; 100(22): e2290-e2303, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37068954

RESUMO

BACKGROUND AND OBJECTIVES: MRI connectomics is an ideal tool to test a network-based model of pathologic propagation from a disease epicenter in neurodegenerative disorders. In this study, we used a novel graph theory-based MRI paradigm to explore functional connectivity reorganization, discerning between direct and indirect connections from disease epicenters, and its relationship with neurodegeneration across clinical presentations of the frontotemporal dementia (FTD) spectrum, including behavioral variant of FTD (bvFTD), nonfluent variant of primary progressive aphasia (nfvPPA), and semantic variant of primary progressive aphasia (svPPA). METHODS: In this observational cross-sectional study, disease epicenters were defined as the peaks of atrophy of a cohort of patients with high confidence of frontotemporal lobar degeneration pathology (Mayo Clinic). These were used as seed regions for stepwise functional connectivity (SFC) analyses in an independent (Milan) set of patients with FTD to assess connectivity in regions directly and indirectly connected to the epicenters. Correlations between SFC architecture in healthy conditions and atrophy patterns in patients with FTD were also tested. RESULTS: As defined by comparing the 42 Mayo Clinic patients with 15 controls, disease epicenters were the left anterior insula for bvFTD, left supplementary motor area for nfvPPA, and left inferior temporal gyrus (ITG) for svPPA. Compared with 94 age-matched controls, patients with bvFTD (n = 64) and nfvPPA (n = 34) of the Milan cohort showed widespread decreased SFC in bilateral cortical regions with direct/indirect connections with epicenters and increased SFC either in directly connected regions, physically close to the respective seed region, or in more distant cortical/cerebellar areas with indirect connections. Across all link steps, svPPA (n = 36) showed SFC decrease mostly within the temporal lobes, with co-occurrent SFC increase in cerebellar regions at indirect link steps. The average stepwise topological distance from the left ITG in a reference group of 50 young healthy controls correlated with regional gray matter volume in svPPA, consistent with network-based degeneration. DISCUSSION: Our findings demonstrate that each FTD syndrome is associated with a characteristic interplay of decreased and increased functional connectivity with the disease epicenter, affecting both direct and indirect connections. SFC revealed novel insights regarding the topology of functional disconnection across FTD syndromes, holding the promise to be used to model disease progression in future longitudinal studies.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Doença de Pick , Afasia Primária Progressiva não Fluente , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Imageamento por Ressonância Magnética , Atrofia , Afasia Primária Progressiva/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-36654496

RESUMO

Objectives: In amyotrophic lateral sclerosis (ALS), verbal fluency index (Vfi) is used to investigate fluency accounting for motor impairment. This study has three aims: (1) to provide Vfi reference values from a cohort of Italian healthy subjects; (2) to assess the ability of Vfi reference values (vs standard verbal fluency test [VFT]) in distinguishing ALS patients with and without executive dysfunction; and (3) to investigate the association between Vfi and brain structural features of ALS patients. Methods: We included 180 healthy subjects and 157 ALS patients who underwent neuropsychological assessment, including VFT and Vfi, and brain MRI. Healthy subjects were split into four subgroups according to sex and education. For each subgroup, we defined the 95th percentile of Vfi as the cutoff. In ALS, the distributions of "abnormal" cases based on Vfi and standard VFT cutoffs were compared using Fisher's exact test. Using quantile regressions in patients, we assessed the association between Vfi and VFT scores, separately, with gray matter volumes and white matter (WM) tract integrity. Results: Applying Vfi and VFT cutoffs, 9 and 13% of ALS cases, respectively, had abnormal scores (p < 0.001). In ALS, while higher Vfi scores were associated with WM changes of callosal fibers linking supplementary motor area, lower VFT performances related to corticospinal tract alterations. Discussion: We provided Italian reference values for the spoken Vfi. Compared to VFT, Vfis are critical to disentangle motor and cognitive deficits in ALS. In patients, abnormal Vfis were associated with damage to WM tracts specifically involved in ideational information processing.


Assuntos
Esclerose Lateral Amiotrófica , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Valores de Referência , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Testes Neuropsicológicos
12.
J Neurol ; 270(3): 1735-1744, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534200

RESUMO

BACKGROUND: Few studies interrogated the involvement of cerebellum in modulating gait in Parkinson's disease (PD) patients with postural instability and gait disorders (PD-PIGD). This study aimed at assessing cerebellar atrophy and activity alterations during functional MRI (fMRI) gait-simulating motor- and dual-tasks in PD-PIGD. METHODS: Twenty-one PD-PIGD and 23 healthy controls underwent clinical assessment, structural MRI, and fMRI including a motor-task (foot anti-phase movements) and a dual-task (foot anti-phase movements while counting backwards by threes). Grey matter cerebellar volumes were assessed using SUIT atlas. FMRI activations were extracted from each cerebellar lobule, and we correlated cerebellar and basal ganglia activity. RESULTS: PD-PIGD patients had reduced volumes of cerebellar motor and non-motor areas relative to controls. During fMRI motor-task, patients showed greater activation of cognitive cerebellar areas (VI and Crus I-II) vs controls. During fMRI dual-task, PD-PIGD patients showed increased activity of cognitive areas (Crus II) and reduced activity of motor areas (I-IV). Cerebellar structural alterations correlated with increased fMRI activity of cerebellar cognitive areas and with lower executive-attentive performance. The increased activity of Crus I during the motor-task correlated with a better motor performance in PD-PIGD. Moreover, the increased activity of cerebellum correlated with a reduced activity of putamen. CONCLUSIONS: In PD-PIGD, the increased activity of non-motor cerebellar areas during gait-simulating tasks may be a consequence of grey matter atrophy or an attempt to compensate the functional failure of cerebellar motor areas and basal ganglia. Cerebellar MRI metrics are useful to characterize brain correlates of motor and dual-task abilities in PD-PIGD patients.


Assuntos
Transtornos Neurológicos da Marcha , Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tremor , Cerebelo/diagnóstico por imagem , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Equilíbrio Postural/fisiologia
13.
Front Neurol ; 13: 931006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911889

RESUMO

Objective: Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods: Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results: MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions: TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.

14.
Neuroimage Clin ; 35: 103145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002963

RESUMO

In the present study, we aimed to investigate the resting-state functional connectivity (RS-FC) of the globus pallidus (GP) in patients with amyotrophic lateral sclerosis (ALS) compared to healthy controls, and the relationship between RS-FC changes and disgust recognition. Twenty-six pure-motor ALS patients and 52 healthy controls underwent RS functional MRI and a neuropsychological assessment including the Comprehensive Affect Testing System. A seed-based RS-FC analysis was performed between the left and right GP and the rest of the brain and compared between groups. Correlations between RS-FC significant changes and subjects' performance in recognizing disgust were tested. Compared to controls, patients were significantly less able to recognize disgust. In ALS compared to controls, the seed-based analysis showed: reduced RS-FC between bilateral GP and bilateral middle and superior frontal and middle cingulate gyri, and increased RS-FC between bilateral GP and bilateral postcentral, supramarginal and superior temporal gyri and Rolandic operculum. Decreased RS-FC was further observed between left GP and left middle and inferior temporal gyri and bilateral caudate; and increased RS-FC was also shown between right GP and left lingual and fusiform gyri. In patients and controls, lower performance in recognizing disgust correlated with reduced RS-FC between left GP and left middle and inferior temporal gyri. In pure-motor ALS patients, we demonstrated altered RS-FC between GP and the rest of the brain. The reduced left pallidum-temporo-striatal RS-FC may have a role in the lower ability of patients in recognizing disgust.


Assuntos
Esclerose Lateral Amiotrófica , Asco , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Globo Pálido/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
15.
Mol Psychiatry ; 27(11): 4809-4821, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35595978

RESUMO

This study investigated the relationship between emotion processing and resting-state functional connectivity (rs-FC) of the brain networks in frontotemporal lobar degeneration (FTLD). Eighty FTLD patients (including cases with behavioral variant of frontotemporal dementia, primary progressive aphasia, progressive supranuclear palsy syndrome, motor neuron disease) and 65 healthy controls underwent rs-functional MRI. Emotion processing was tested using the Comprehensive Affect Testing System (CATS). In patients and controls, correlations were investigated between each emotion construct and rs-FC changes within critical networks. Mean rs-FC of the clusters significantly associated with CATS scoring were compared among FTLD groups. FTLD patients had pathological CATS scores compared with controls. In controls, increased rs-FC of the cerebellar and visuo-associative networks correlated with better scores in emotion-matching and discrimination tasks, respectively; while decreased rs-FC of the visuo-spatial network was related with better performance in the affect-matching and naming. In FTLD, the associations between rs-FC and CATS scores involved more brain regions, such as orbitofrontal and middle frontal gyri within anterior networks (i.e., salience and default-mode), parietal and somatosensory regions within visuo-spatial and sensorimotor networks, caudate and thalamus within basal-ganglia network. Rs-FC changes associated with CATS were similar among all FTLD groups. In FTLD compared to controls, the pattern of rs-FC associated with emotional processing involves a larger number of brain regions, likely due to functional specificity loss and compensatory attempts. These associations were similar across all FTLD groups, suggesting a common physiopathological mechanism of emotion processing breakdown, regardless the clinical presentation and pattern of atrophy.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Degeneração Lobar Frontotemporal/patologia , Encéfalo , Mapeamento Encefálico , Imageamento por Ressonância Magnética
16.
J Neurol ; 269(7): 3400-3412, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35249144

RESUMO

BACKGROUND AND OBJECTIVES: To explore cognitive, EEG, and MRI features in COVID-19 survivors up to 10 months after hospital discharge. METHODS: Adult patients with a recent diagnosis of COVID-19 and reporting subsequent cognitive complaints underwent neuropsychological assessment and 19-channel-EEG within 2 months (baseline, N = 49) and 10 months (follow-up, N = 33) after hospital discharge. A brain MRI was obtained for 36 patients at baseline. Matched healthy controls were included. Using eLORETA, EEG regional current densities and linear lagged connectivity values were estimated. Total brain and white matter hyperintensities (WMH) volumes were measured. Clinical and instrumental data were evaluated between patients and controls at baseline, and within patient whole group and with/without dysgeusia/hyposmia subgroups over time. Correlations among findings at each timepoint were computed. RESULTS: At baseline, 53% and 28% of patients showed cognitive and psychopathological disturbances, respectively, with executive dysfunctions correlating with acute-phase respiratory distress. Compared to healthy controls, patients also showed higher regional current density and connectivity at delta band, correlating with executive performances, and greater WMH load, correlating with verbal memory deficits. A reduction of cognitive impairment and delta band EEG connectivity were observed over time, while psychopathological symptoms persisted. Patients with acute dysgeusia/hyposmia showed lower improvement at memory tests than those without. Lower EEG delta band at baseline predicted worse cognitive functioning at follow-up. DISCUSSION: COVID-19 patients showed interrelated cognitive, EEG, and MRI abnormalities 2 months after hospital discharge. Cognitive and EEG findings improved at 10 months. Dysgeusia and hyposmia during acute COVID-19 were related with increased vulnerability in memory functions over time.


Assuntos
COVID-19 , Disfunção Cognitiva , Adulto , Anosmia , COVID-19/complicações , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disgeusia , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Sobreviventes
17.
Neurology ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853179

RESUMO

OBJECTIVES: A significant overlap between amyotrophic lateral sclerosis (ALS) and behavioral variant of frontotemporal dementia (bvFTD) has been observed at clinical, genetic and pathological levels. Within this continuum of presentations, the presence of mild cognitive and/or behavioral symptoms in ALS patients has been consistently reported, although it is unclear whether this is to be considered a distinct phenotype or, rather, a natural evolution of ALS. Here, we used mathematical modeling of MRI connectomic data to decipher common and divergent neural correlates across the ALS-FTD spectrum. METHODS: We included 83 ALS patients, 35 bvFTD patients and 61 healthy controls, who underwent clinical, cognitive and MRI assessments. ALS patients were classified according to the revised Strong criteria into 54 ALS with only motor deficits (ALS-cn), 21 ALS with cognitive and/or behavioral involvement (ALS-ci/bi), and 8 ALS with bvFTD (ALS-FTD). First, we assessed the functional and structural connectivity patterns across the ALS-FTD spectrum. Second, we investigated whether and where MRI connectivity alterations of ALS patients with any degree of cognitive impairment (i.e., ALS-ci/bi and ALS-FTD) resembled more the pattern of damage of one (ALS-cn) or the other end (bvFTD) of the spectrum, moving from group-level to single-subject analysis. RESULTS: As compared with controls, extensive structural and functional disruption of the frontotemporal and parietal networks characterized bvFTD (bvFTD-like pattern), while a more focal structural damage within the sensorimotor-basal ganglia areas characterized ALS-cn (ALS-cn-like pattern). ALS-ci/bi patients demonstrated an "ALS-cn-like" pattern of structural damage, diverging from ALS-cn with similar motor impairment for the presence of enhanced functional connectivity within sensorimotor areas and decreased functional connectivity within the "bvFTD-like" pattern. On the other hand, ALS-FTD patients resembled both structurally and functionally the bvFTD-like pattern of damage with, in addition, the structural ALS-cn-like damage in the motor areas. CONCLUSIONS: Our findings suggest a maladaptive role of functional rearrangements in ALS-ci/bi concomitantly with similar structural alterations compared to ALS-cn, supporting the hypothesis that ALS-ci/bi might be considered as a phenotypic variant of ALS, rather than a consequence of disease worsening.

18.
Neuroimage Clin ; 32: 102803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34537684

RESUMO

In the present study we investigated emotion recognition in pure motor amyotrophic lateral sclerosis (ALS) patients and its relationship with the integrity of basal ganglia, hippocampus and amygdala. Twenty ALS patients without either cognitive or behavioural impairment, and 52 matched healthy controls performed a neuropsychological assessment including the Comprehensive Affect Testing System (CATS) investigating emotion recognition. All participants underwent also a 3T brain MRI. Volumes of basal ganglia, hippocampus and amygdala bilaterally were measured using FIRST in FSL. Sociodemographic, cognitive and MRI data were compared between groups. In ALS patients, correlations between CATS significant findings, brain volumes, cognition, mood and behaviour were explored. ALS patients showed altered performances at the CATS total score and, among the investigated emotions, patients were significantly less able to recognize disgust compared with controls. No brain volumetric differences were observed between groups. In ALS patients, a lower performance in disgust recognition was related with a reduced volume of the left pallidum and a lower performance on the Edinburgh Cognitive and Behavioural ALS Screen. Cognitively/behaviourally unimpaired ALS patients showed impaired disgust recognition, which was associated with pallidum volume. The association with cognitive alterations may suggest impaired disgust recognition as an early marker of cognitive decline.


Assuntos
Esclerose Lateral Amiotrófica , Asco , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Gânglios da Base , Encéfalo , Humanos , Testes Neuropsicológicos , Reconhecimento Psicológico
19.
Neurology ; 97(16): e1594-e1607, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34544819

RESUMO

BACKGROUND AND OBJECTIVES: To assess cortical, subcortical, and cerebellar gray matter (GM) atrophy using MRI in patients with disorders of the frontotemporal lobar degeneration (FTLD) spectrum with known genetic mutations. METHODS: Sixty-six patients carrying FTLD-related mutations were enrolled, including 44 with pure motor neuron disease (MND) and 22 with frontotemporal dementia (FTD). Sixty-one patients with sporadic FTLD (sFTLD) matched for age, sex, and disease severity with genetic FTLD (gFTLD) were also included, as well as 52 healthy controls. A whole-brain voxel-based morphometry (VBM) analysis was performed. GM volumes of subcortical and cerebellar structures were obtained. RESULTS: Compared with controls, GM atrophy on VBM was greater and more diffuse in genetic FTD, followed by sporadic FTD and genetic MND cases, whereas patients with sporadic MND (sMND) showed focal motor cortical atrophy. Patients carrying C9orf72 and GRN mutations showed the most widespread cortical volume loss, in contrast with GM sparing in SOD1 and TARDBP. Globally, patients with gFTLD showed greater atrophy of parietal cortices and thalami compared with sFTLD. In volumetric analysis, patients with gFTLD showed volume loss compared with sFTLD in the caudate nuclei and thalami, in particular comparing C9-MND with sMND cases. In the cerebellum, patients with gFTLD showed greater atrophy of the right lobule VIIb than sFTLD. Thalamic volumes of patients with gFTLD with a C9orf72 mutation showed an inverse correlation with Frontal Behavioral Inventory scores. DISCUSSION: Measures of deep GM and cerebellar structural involvement may be useful markers of gFTLD, particularly C9orf72-related disorders, regardless of the clinical presentation within the FTLD spectrum.


Assuntos
Degeneração Lobar Frontotemporal/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Doença dos Neurônios Motores/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia
20.
Mov Disord ; 36(11): 2569-2582, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286884

RESUMO

BACKGROUND: Action observation training and motor imagery may improve motor learning in Parkinson's disease (PD). OBJECTIVES: The objectives of this study were to assess mobility and balance (performing motor and dual tasks) and brain functional reorganization following 6 weeks of action observation training and motor imagery associated with dual-task gait/balance exercises in PD patients with postural instability and gait disorders relative to dual-task training alone. METHODS: Twenty-five PD-postural instability and gait disorder patients were randomized into 2 groups: the DUAL-TASK+AOT-MI group performed a 6-week gait/balance training consisting of action observation training-motor imagery combined with practicing the observed-imagined exercises; the DUAL-TASK group performed the same exercises combined with watching landscape videos. Exercises were increasingly difficult to include the dual task. At baseline and at 6 weeks, patients underwent: mobility, gait, and balance evaluations (also repeated 2 months after training), cognitive assessment, and functional MRI, including motor and dual tasks. RESULTS: Dual-task gait/balance training enhanced mobility, during both single- and dual-task conditions, and executive functions in PD-postural instability and gait disorders, with a long-lasting effect at 14 weeks. When exercises were preceded by action observation training-motor imagery, PD-postural instability and gait disorders showed greater improvement of balance and gait velocity both with and without the dual task, particularly during the turning phase. After training, the DUAL-TASK+AOT-MI group showed reduced recruitment of frontal areas and increased activity of cerebellum during functional-MRI motor and dual task, correlating with balance/turning velocity and executive improvements, respectively. The DUAL-TASK group showed reduced activity of supplementary motor area and increased recruitment of temporo-parietal areas during the dual task and decreased cerebellar activity during the motor task correlating with faster turning velocity. Functional MRI results were not corrected for multiple comparisons and should be interpreted carefully. CONCLUSIONS: Adding action observation training-motor imagery to dual-task gait/balance training promotes specific functional reorganization of brain areas involved in motor control and executive-attentive abilities and more long-lasting effects on dual-task mobility and balance in PD-postural instability and gait disorders. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Terapia por Exercício/métodos , Marcha , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Equilíbrio Postural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA