Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832798

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes are a potentially unlimited cell source and promising patient-specific in vitro model of cardiac diseases. Yet, these cells are limited by immaturity and population heterogeneity. Current in vitro studies aiming at better understanding of the mechanical and chemical cues in the microenvironment that drive cellular maturation involve deformable materials and precise manipulation of the microenvironment with, for example, micropatterns. Such microenvironment manipulation most often involves microfabrication protocols which are time-consuming, require cleanroom facilities and photolithography expertise. Here, we present a method to increase the scale of the fabrication pipeline, thereby enabling large-batch generation of shelf-stable microenvironment protein templates on glass chips. This decreases fabrication time and allows for more flexibility in the subsequent steps, for example, in tuning the material properties and the selection of extracellular matrix or cell proteins. Further, the fabrication of deformable hydrogels has been optimized for compatibility with these templates, in addition to the templates being able to be used to acquire protein patterns directly on the glass chips. With our approach, we have successfully controlled the shapes of cardiomyocytes seeded on Matrigel-patterned hydrogels.

2.
Annu Rev Biomed Eng ; 22: 257-284, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32501769

RESUMO

Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.


Assuntos
Biologia/métodos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Adsorção , Animais , Materiais Biocompatíveis , Biologia/tendências , Células Cultivadas , Colágeno/metabolismo , Dimetilpolisiloxanos/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Técnicas In Vitro , Integrinas/metabolismo , Laminina/metabolismo , Ligantes , Camundongos , Modelos Cardiovasculares , Ligação Proteica , Transdução de Sinais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA