Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(26): 5001-5015, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37357554

RESUMO

Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like n-alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of n-alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, i.e. flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.


Assuntos
Etanol , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Membrana Celular/química
2.
Chem Res Toxicol ; 36(4): 643-652, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926887

RESUMO

In recent years, vaping has increased in both popularity and ease of access. This has led to an outbreak of a relatively new condition known as e-cigarette/vaping-associated lung injury (EVALI). This injury can be caused by physical interactions between the pulmonary surfactant (PS) in the lungs and toxins typically found in vaping solutions, such as medium chain triglycerides (MCT). MCT has been largely used as a carrier agent within many cannabis products commercially available on the market. Pulmonary surfactant ensures proper respiration by maintaining low surface tensions and interface stability throughout each respiratory cycle. Therefore, any impediments to this system that negatively affect the efficacy of this function will have a strong hindrance on the individual's quality of life. Herein, neutron spin echo (NSE) and Langmuir trough rheology were used to probe the effects of MCT on the mechanical properties of pulmonary surfactant. Alongside a porcine surfactant extract, two lipid-only mimics of progressing complexity were used to study MCT effects in a range of systems that are representative of endogenous surfactant. MCT was shown to have a greater biophysical effect on bilayer systems compared to monolayers, which may align with biological data to propose a mechanism of surfactant inhibition by MCT oil.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Vaping , Animais , Suínos , Qualidade de Vida , Tensoativos , Elasticidade
3.
Biophys J ; 122(11): 2353-2366, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992561

RESUMO

Pancratistatin (PST) and narciclasine (NRC) are natural therapeutic agents that exhibit specificity toward the mitochondria of cancerous cells and initiate apoptosis. Unlike traditional cancer therapeutic agents, PST and NRC are effective, targeted, and have limited adverse effects on neighboring healthy, noncancerous cells. Currently, the mechanistic pathway of action for PST and NRC remains elusive, which in part inhibits PST and NRC from becoming efficacious therapeutic alternatives. Herein, we use neutron and x-ray scattering in combination with calcein leakage assays to characterize the effects of PST, NRC, and tamoxifen (TAM) on a biomimetic model membrane. We report an increase in lipid flip-flop half-times (t1/2) (≈12.0%, ≈35.1%, and a decrease of ≈45.7%) with 2 mol percent PST, NRC, and TAM respectively. An increase in bilayer thickness (≈6.3%, ≈7.8%, and ≈7.8%) with 2 mol percent PST, NRC, and TAM, respectively, was also observed. Lastly, increases in membrane leakage (≈31.7%, ≈37.0%, and ≈34.4%) with 2 mol percent PST, NRC, and TAM, respectively, were seen. Considering the maintenance of an asymmetric lipid composition across the outer mitochondrial membrane (OMM) is crucial to eukaryotic cellular homeostasis and survival, our results suggest PST and NRC may play a role in disrupting the native distribution of lipids within the OMM. A possible mechanism of action for PST- and NRC-induced mitochondrial apoptosis is proposed via the redistribution of the native OMM lipid organization and through OMM permeabilization.


Assuntos
Neoplasias , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Apoptose , Transporte Biológico , Lipídeos , Bicamadas Lipídicas
4.
Biochemistry ; 61(21): 2366-2376, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227768

RESUMO

The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.


Assuntos
Antioxidantes , alfa-Tocoferol , Vitamina E/farmacologia , Ácidos Graxos Insaturados , Tocoferóis
5.
Mol Pharm ; 19(6): 1839-1852, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35559658

RESUMO

Pancratistatin (PST) is a natural antiviral alkaloid that has demonstrated specificity toward cancerous cells and explicitly targets the mitochondria. PST initiates apoptosis while leaving healthy, noncancerous cells unscathed. However, the manner by which PST induces apoptosis remains elusive and impedes the advancement of PST as a natural anticancer therapeutic agent. Herein, we use neutron spin-echo (NSE) spectroscopy, molecular dynamics (MD) simulations, and supporting small angle scattering techniques to study PST's effect on membrane dynamics using biologically representative model membranes. Our data suggests that PST stiffens the inner mitochondrial membrane (IMM) by being preferentially associated with cardiolipin, which would lead to the relocation and release of cytochrome c. Second, PST has an ordering effect on the lipids and disrupts their distribution within the IMM, which would interfere with the maintenance and functionality of the active forms of proteins in the electron transport chain. These previously unreported findings implicate PST's effect on mitochondrial apoptosis.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/química , Apoptose , Isoquinolinas/química , Isoquinolinas/farmacologia , Mitocôndrias
6.
Methods Mol Biol ; 2402: 151-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854043

RESUMO

The monomeric exchange kinetics of sub-micron particles provide insight into their stability and dynamism. Traditional techniques used to measure the intra- and inter-particle exchange often require monitoring the transfer of bulky and perturbing fluorescent labels. Time-resolved small angle neutron scattering (TR-SANS) overcomes these flaws by isotope labeling, allowing for the monomeric exchange rate determination of unperturbed, stress-free particles. Here, we describe TR-SANS in detail and novel applications of the technique.


Assuntos
Difração de Nêutrons , Cinética , Nêutrons , Espalhamento a Baixo Ângulo
7.
Methods Mol Biol ; 2402: 163-177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854044

RESUMO

Lipid domains in model membranes are routinely studied to provide insight into the physical interactions that drive raft formation in cellular membranes. Using small angle neutron scattering, contrast-matching techniques enable the detection of lipid domains ranging from tens to hundreds of nanometers which are not accessible to other techniques without the use of extrinsic probes. Here, we describe a probe-free experimental approach and model-free analysis to identify lipid domains in freely floating vesicles of ternary phase separating lipid mixtures.


Assuntos
Lipídeos , Espalhamento a Baixo Ângulo , Fenômenos Biofísicos , Bicamadas Lipídicas , Microdomínios da Membrana , Difração de Nêutrons , Nêutrons
8.
Chem Res Toxicol ; 33(9): 2432-2440, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32842741

RESUMO

The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.


Assuntos
Acetatos/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar/induzido quimicamente , Vaping , Vitamina E/efeitos adversos , Acetatos/química , Humanos , Conformação Molecular , Estresse Mecânico , Vitamina E/química
9.
Biochim Biophys Acta Biomembr ; 1862(8): 183189, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954106

RESUMO

The antioxidant vitamin E is a commonly used vitamin supplement. Although the multi-billion dollar vitamin and nutritional supplement industry encourages the use of vitamin E, there is very little evidence supporting its actual health benefits. Moreover, vitamin E is now marketed as a lipid raft destabilizing anti-cancer agent, in addition to its antioxidant behaviour. Here, we studied the influence of vitamin E and some of its vitamers on membrane raft stability using phase separating unilamellar lipid vesicles in conjunction with small-angle scattering techniques and fluorescence microscopy. We find that lipid phase behaviour remains unperturbed well beyond physiological concentrations of vitamin E (up to a mole fraction of 0.10). Our results are consistent with a proposed line active role of vitamin E at the domain boundary. We discuss the implications of these findings as they pertain to lipid raft modification in native membranes, and propose a new hypothesis for the antioxidant mechanism of vitamin E.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Vitamina E/metabolismo , Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Microscopia de Fluorescência , Tocoferóis/metabolismo , Tocoferóis/farmacologia , Lipossomas Unilamelares/metabolismo , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA