RESUMO
BACKGROUND: Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS: A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS: The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS: Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.
RESUMO
SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.
Assuntos
COVID-19 , DNA Glicosilases , Cricetinae , Animais , Humanos , COVID-19/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismoRESUMO
Background: Sweet Syndrome (SS) is a rare inflammatory skin condition characterized by the sudden appearance of tender, erythematous or violaceous papules, plaques, and nodules typically found on the face, neck, shoulder, upper extremities, and trunk. Often, SS is difficult to diagnose because of its various non-specific manifestations, including fever, arthralgia, myalgia and ocular involvement. In most cases described in literature, cutaneous and pulmonary symptoms of SS present in a concomitant manner. Several reported cases of pulmonary SS have shown that if left untreated, acute respiratory distress syndrome can ensue and progress to fatal respiratory failure. Case report: A 58-year-old female with acute myeloid leukemia (AML) secondary to chronic lymphocytic leukemia (CLL) presented with new nodular lesions, dyspnea, and fevers. Chest X-ray revealed pulmonary infiltrates. The patient developed new facial lesions and worsening hypoxic respiratory failure. Further infectious workup was negative. She was found to have SS with pulmonary involvement and initiated on high-dose intravenous (IV) steroids with marked clinical improvement. Conclusions: Major and minor criteria for the diagnosis of lung-associated SS should be carefully evaluated, especially when a biopsy is unavailable. The following case report describes the clinical course and outcomes from treatment for this patient.
RESUMO
Social science research has highlighted "honor" as a central value driving social behavior in Mediterranean societies, which requires individuals to develop and protect a sense of their personal self-worth and their social reputation, through assertiveness, competitiveness, and retaliation in the face of threats. We predicted that members of Mediterranean societies may exhibit a distinctive combination of independent and interdependent social orientation, self-construal, and cognitive style, compared to more commonly studied East Asian and Anglo-Western cultural groups. We compared participants from eight Mediterranean societies (Spain, Italy, Greece, Turkey, Cyprus [Turkish Cypriot and Greek Cypriot communities], Lebanon, Egypt) to participants from East Asian (Korea, Japan) and Anglo-Western (the United Kingdom, the United States) societies, using six implicit social orientation indicators, an eight-dimensional self-construal scale, and four cognitive style indicators. Compared with both East Asian and Anglo-Western samples, samples from Mediterranean societies distinctively emphasized several forms of independence (relative intensity of disengaging [vs. engaging] emotions, happiness based on disengaging [vs. engaging] emotions, dispositional [vs. situational] attribution style, self-construal as different from others, self-directed, self-reliant, self-expressive, and consistent) and interdependence (closeness to in-group [vs. out-group] members, self-construal as connected and committed to close others). Our findings extend previous insights into patterns of cultural orientation beyond commonly examined East-West comparisons to an understudied world region. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Assuntos
Emoções , Comportamento Social , Humanos , Estados Unidos , Japão , Grupos Raciais , Reino Unido , AutoimagemRESUMO
OBJECTIVE: People's psychological tendencies are attuned to their sociocultural context and culture-specific ways of being, feeling, and thinking are believed to assist individuals in successfully navigating their environment. Supporting this idea, a stronger "fit" with one's cultural environment has often been linked to positive psychological outcomes. The current research expands the cultural, conceptual, and methodological space of cultural fit research by exploring the link between well-being and honor, a central driver of social behavior in the Mediterranean region. METHOD: Drawing on a multi-national sample from eight countries circum-Mediterranean (N = 2257), we examined the relationship between cultural fit in honor and well-being at the distal level (fit with one's perceived society) using response surface analysis (RSA) and at the proximal level (fit with one's university gender group) using profile analysis. RESULTS: We found positive links between fit and well-being in both distal (for some, but not all, honor facets) and proximal fit analyses (across all honor facets). Furthermore, most fit effects in the RSA were complemented with positive level effects of the predictors, with higher average honor levels predicting higher well-being. CONCLUSIONS: Our findings highlight the interplay between individual and environmental factors in honor as well as the important role honor plays in well-being in the Mediterranean region.
RESUMO
BACKGROUND: In the aftermath of Covid-19, some patients develop a fibrotic lung disease, i.e., post-COVID-19 lung disease (PCLD), for which we currently lack insights into pathogenesis, disease models, or treatment options. METHODS: Using an AI-guided approach, we analyzed > 1000 human lung transcriptomic datasets associated with various lung conditions using two viral pandemic signatures (ViP and sViP) and one covid lung-derived signature. Upon identifying similarities between COVID-19 and idiopathic pulmonary fibrosis (IPF), we subsequently dissected the basis for such similarity from molecular, cytopathic, and immunologic perspectives using a panel of IPF-specific gene signatures, alongside signatures of alveolar type II (AT2) cytopathies and of prognostic monocyte-driven processes that are known drivers of IPF. Transcriptome-derived findings were used to construct protein-protein interaction (PPI) network to identify the major triggers of AT2 dysfunction. Key findings were validated in hamster and human adult lung organoid (ALO) pre-clinical models of COVID-19 using immunohistochemistry and qPCR. FINDINGS: COVID-19 resembles IPF at a fundamental level; it recapitulates the gene expression patterns (ViP and IPF signatures), cytokine storm (IL15-centric), and the AT2 cytopathic changes, e.g., injury, DNA damage, arrest in a transient, damage-induced progenitor state, and senescence-associated secretory phenotype (SASP). These immunocytopathic features were induced in pre-clinical COVID models (ALO and hamster) and reversed with effective anti-CoV-2 therapeutics in hamsters. PPI-network analyses pinpointed ER stress as one of the shared early triggers of both diseases, and IHC studies validated the same in the lungs of deceased subjects with COVID-19 and SARS-CoV-2-challenged hamster lungs. Lungs from tg-mice, in which ER stress is induced specifically in the AT2 cells, faithfully recapitulate the host immune response and alveolar cytopathic changes that are induced by SARS-CoV-2. INTERPRETATION: Like IPF, COVID-19 may be driven by injury-induced ER stress that culminates into progenitor state arrest and SASP in AT2 cells. The ViP signatures in monocytes may be key determinants of prognosis. The insights, signatures, disease models identified here are likely to spur the development of therapies for patients with IPF and other fibrotic interstitial lung diseases. FUNDING: This work was supported by the National Institutes for Health grants R01- GM138385 and AI155696 and funding from the Tobacco-Related disease Research Program (R01RG3780).
Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Adulto , Animais , Síndrome da Liberação de Citocina , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , SARS-CoV-2RESUMO
Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.
RESUMO
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Inteligência Artificial , Colite/induzido quimicamente , Colite/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Macrófagos/metabolismo , Camundongos , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismoRESUMO
Background: In the aftermath of Covid-19, some patients develop a fibrotic lung disease, i.e., p ost- C OVID-19 l ung d isease (PCLD), for which we currently lack insights into pathogenesis, disease models, or treatment options. Method: Using an AI-guided approach, we analyzed > 1000 human lung transcriptomic datasets associated with various lung conditions using two viral pandemic signatures (ViP and sViP) and one covid lung-derived signature. Upon identifying similarities between COVID-19 and idiopathic pulmonary fibrosis (IPF), we subsequently dissected the basis for such similarity from molecular, cytopathic, and immunologic perspectives using a panel of IPF-specific gene signatures, alongside signatures of alveolar type II (AT2) cytopathies and of prognostic monocyte-driven processes that are known drivers of IPF. Transcriptome-derived findings were used to construct protein-protein interaction (PPI) network to identify the major triggers of AT2 dysfunction. Key findings were validated in hamster and human adult lung organoid (ALO) pre-clinical models of COVID-19 using immunohistochemistry and qPCR. Findings: COVID-19 resembles IPF at a fundamental level; it recapitulates the gene expression patterns (ViP and IPF signatures), cytokine storm (IL15-centric), and the AT2 cytopathic changes, e.g., injury, DNA damage, arrest in a transient, damage-induced progenitor state, and senescence-associated secretory phenotype (SASP). These immunocytopathic features were induced in pre-clinical COVID models (ALO and hamster) and reversed with effective anti-CoV-2 therapeutics in hamsters. PPI-network analyses pinpointed ER stress as one of the shared early triggers of both diseases, and IHC studies validated the same in the lungs of deceased subjects with COVID-19 and SARS-CoV-2-challenged hamster lungs. Lungs from tg - mice, in which ER stress is induced specifically in the AT2 cells, faithfully recapitulate the host immune response and alveolar cytopathic changes that are induced by SARS-CoV-2. Interpretation: Like IPF, COVID-19 may be driven by injury-induced ER stress that culminates into progenitor state arrest and SASP in AT2 cells. The ViP signatures in monocytes may be key determinants of prognosis. The insights, signatures, disease models identified here are likely to spur the development of therapies for patients with IPF and other fibrotic interstitial lung diseases. Funding: This work was supported by the National Institutes for Health grants R01-GM138385 and AI155696 and funding from the Tobacco-Related disease Research Program (R01RG3780). One Sentence Summary: Severe COVID-19 triggers cellular processes seen in fibrosing Interstitial Lung Disease. RESEARCH IN CONTEXT: Evidence before this study: In its aftermath, the COVID-19 pandemic has left many survivors, almost a third of those who recovered, with a mysterious long-haul form of the disease which culminates in a fibrotic form of interstitial lung disease (post-COVID-19 ILD). Post-COVID-19 ILD remains a largely unknown entity. Currently, we lack insights into the core cytopathic features that drive this condition.Added value of this study: Using an AI-guided approach, which involves the use of sets of gene signatures, protein-protein network analysis, and a hamster model of COVID-19, we have revealed here that COVID-19 -lung fibrosis resembles IPF, the most common form of ILD, at a fundamental levelâ"showing similar gene expression patterns in the lungs and blood, and dysfunctional AT2 processes (ER stress, telomere instability, progenitor cell arrest, and senescence). These findings are insightful because AT2 cells are known to contain an elegant quality control network to respond to intrinsic or extrinsic stress; a failure of such quality control results in diverse cellular phenotypes, of which ER stress appears to be a point of convergence, which appears to be sufficient to drive downstream fibrotic remodeling in the lung.Implications of all the available evidence: Because unbiased computational methods identified the shared fundamental aspects of gene expression and cellular processes between COVID-19 and IPF, the impact of our findings is likely to go beyond COVID-19 or any viral pandemic. The insights, tools (disease models, gene signatures, and biomarkers), and mechanisms identified here are likely to spur the development of therapies for patients with IPF and, other fibrotic interstitial lung diseases, all of whom have limited or no treatment options. To dissect the validated prognostic biomarkers to assess and track the risk of pulmonary fibrosis and develop therapeutics to halt fibrogenic progression.
RESUMO
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3KâAkt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Assuntos
Fertilidade , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Transdução de Sinais/genética , Capacitação Espermática/genética , Proteínas de Transporte Vesicular/genética , Animais , Regulação para Baixo , Feminino , Fertilidade/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Espermatócitos/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Testículo/patologiaRESUMO
Background: SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods: We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results: Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2âAT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions: Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding: This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).
Assuntos
Células-Tronco Adultas , COVID-19 , Pulmão/patologia , Modelos Biológicos , Organoides , Células-Tronco Adultas/virologia , COVID-19/patologia , COVID-19/virologia , Feminino , Humanos , Pulmão/citologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Organoides/virologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologiaRESUMO
BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2â¢ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antivirais/administração & dosagem , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Interleucina-15/genética , Receptores de Interleucina-15/genética , Viroses/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Inteligência Artificial , Autopsia , COVID-19/imunologia , Cricetinae , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Redes Reguladoras de Genes/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Interleucina-15/sangue , Pulmão/imunologia , Mesocricetus , Pandemias , Receptores de Interleucina-15/sangue , Viroses/imunologia , Tratamento Farmacológico da COVID-19RESUMO
OBJECTIVE: The intestinal epithelial barrier (IEB) restricts the passage of microbes and potentially harmful substances from the lumen through the paracellular space, and rupture of its integrity is associated with a variety of gastrointestinal disorders and extra-digestive diseases. Increased IEB permeability has been linked to disruption of metabolic homeostasis leading to obesity and type 2 diabetes. Interestingly, recent studies have uncovered compelling evidence that the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in maintaining epithelial cell barrier function. However, our understanding of the function of intestinal AMPK in regulating IEB and glucose homeostasis remains sparse. METHODS: We generated mice lacking the two α1 and α2 AMPK catalytic subunits specifically in intestinal epithelial cells (IEC AMPK KO) and determined the physiological consequences of intestinal-specific deletion of AMPK in response to high-fat diet (HFD)-induced obesity. We combined histological, functional, and integrative analyses to ascertain the effects of gut AMPK loss on intestinal permeability in vivo and ex vivo and on the development of obesity and metabolic dysfunction. We also determined the impact of intestinal AMPK deletion in an inducible mouse model (i-IEC AMPK KO) by measuring IEB function, glucose homeostasis, and the composition of gut microbiota via fecal 16S rRNA sequencing. RESULTS: While there were no differences in in vivo intestinal permeability in WT and IEC AMPK KO mice, ex vivo transcellular and paracellular permeability measured in Ussing chambers was significantly increased in the distal colon of IEC AMPK KO mice. This was associated with a reduction in pSer425 GIV phosphorylation, a marker of leaky gut barrier. However, the expression of tight junction proteins in intestinal epithelial cells and pro-inflammatory cytokines in the lamina propria were not different between genotypes. Although the HFD-fed AMPK KO mice displayed suppression of the stress polarity signaling pathway and a concomitant increase in colon permeability, loss of intestinal AMPK did not exacerbate body weight gain or adiposity. Deletion of AMPK was also not sufficient to alter glucose homeostasis or the acute glucose-lowering action of metformin in control diet (CD)- or HFD-fed mice. CD-fed i-IEC AMPK KO mice also presented higher permeability in the distal colon under homeostatic conditions but, surprisingly, this was not detected upon HFD feeding. Alteration in epithelial barrier function in the i-IEC AMPK KO mice was associated with a shift in the gut microbiota composition with higher levels of Clostridiales and Desulfovibrionales. CONCLUSIONS: Altogether, our results revealed a significant role of intestinal AMPK in maintaining IEB integrity in the distal colon but not in regulating glucose homeostasis. Our data also highlight the complex interaction between gut microbiota and host AMPK.
Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Colo/metabolismo , Glucose/metabolismo , Homeostase , Animais , Bactérias/classificação , Bactérias/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16SRESUMO
SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection whereas distal alveolar differentiation (AT2âAT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19 which can be immediately utilized to investigate COVID-19 pathogenesis, and vet new therapies and vaccines.
RESUMO
We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all vi ral p andemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2â¢ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. ONE SENTENCE SUMMARY: The host immune response in COVID-19. PANEL RESEARCH IN CONTEXT: Evidence before this study: The SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more 'misses' than 'hits'. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them.Added value of this study: This work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the 'cytokine storm' mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs.Implications of all the available evidence: The ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.
RESUMO
Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.
Assuntos
Proteínas dos Microfilamentos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Colite/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células RAW 264.7 , Sepse/metabolismo , Transdução de SinaisRESUMO
Introducción: Un amplio número de sobrevivientes de cáncer de mama afrontan dificultades físicas, psicológicas y sociales derivadas de la enfermedad y el tratamiento, que pueden resultar estresantes y generar emociones displacenteras. Objetivo: Describir las principales fuentes y vivencias de estrés de sobrevivientes de cáncer, sus estados emocionales (ansiedad y depresión) y las estrategias de afrontamiento ante la enfermedad. Métodos: Bajo un paradigma cuantitativo, la investigación siguió un diseño no experimental con un estudio descriptivo, transversal. Participaron 30 sobrevivientes de cáncer de mama seleccionadas intencionalmente en el Policlínico Universitario Chiqui Gómez Lubián, municipio Santa Clara, durante el primer trimestre del 2016. Se emplearon las siguientes pruebas: Escala de modos de afrontamiento, entrevista psicológica, inventario de Situaciones y Respuestas de Ansiedad, y prueba de Zung y Conde. Resultados: Las principales fuentes de estrés fueron: la enfermedad, la interrupción de proyectos familiares, el temor a la recurrencia y las situaciones cotidianas. La depresión estuvo presente en 60 % de la muestra, prevaleció un estilo de afrontamiento centrado en la emoción, y la estrategia más empleada fue el autocontrol. Conclusiones: Las fuentes de estrés que afrontaron las mujeres estudiadas influyeron en la aparición de vivencias emocionales displancenteras, predominaron los síntomas depresivos moderados, asociados al significado de pérdida atribuida a la enfermedad. Predominó el afrontamiento a la enfermedad centrado en la emoción. De mantenerse en el tiempo dichas situaciones, afectarán su bienestar y calidad de vida(AU)
ABSTRACT Introduction: A wide range of breast cancer survivors face physical, psychological and social difficulties derived from the disease and treatments, which can be stressful and generate unpleasant emotions. Objective: Describe the main sources and experiences of stress, evaluate emotional states (anxiety and depression) and identify strategies for coping with the disease. Methods: Under a quantitative paradigm, the research followed a non-experimental design with a descriptive, transversal study. Thirty survivors of breast cancer selected intentionally participated in the Chiqui Gómez Lubián University Polyclinic, Santa Clara municipality, during the first trimester of 2016. The following tests were used: Coverage mode scale, psychological interview, Inventory of Situations and Responses of Anxiety, and Test of Zung and Count. Results: The main sources of stress were: illness, interruption of family projects, fear of recurrence and everyday situations. Depression is present in 60 percent of the sample, prevailing a style of coping focused on emotion, being the strategy most used self-control. Conclusions: The sources of stress faced by the women studied influence the appearance of unpleasure emotional experiences, predominantly moderate depressive symptoms, associated with the meaning of loss attributed to the disease. Predominance coping with the illness centered on emotion. If they stay in time, these situations will affect their well-being and quality of life. It is recommended to extend this type of study to a greater number of individuals that allow establishing regularities for the population(AU)
Assuntos
Humanos , Feminino , Neoplasias da Mama/epidemiologia , Sobreviventes/psicologia , Emoções , Angústia Psicológica , Epidemiologia Descritiva , Estudos TransversaisRESUMO
Resumen El presente artículo pretende introducir al lector en el análisis de los principales aspectos teóricos relacionados con la Psicoeducación, así como con la intervención psicoeducativa aportando resultados de investigaciones que demuestran la efectividad de este proceder terapéutico en mujeres sobrevivientes de cáncer de mama. Se realiza un análisis del recorrido histórico por los diferentes contextos relacionados con la Psicoeducación, fundamentalmente en la atención del paciente oncológico y en especial en mujeres sobrevivientes de cáncer de mama. Todo esto se realiza desde la perspectiva técnica, investigativa y metodológica de la ciencia, ya que se considera a la psicología como una de las disciplinas de estudio superior cuyas conclusiones se encuentran avaladas por un amplio y reconocido desarrollo del conocimiento en este campo.
Abstract This article aims to introduce the reader to the analysis of the main theoretical aspects of Psychoeducation, as well as providing psychoeducational intervention research results that demonstrate the effectiveness of this therapeutic procedure in women survivors of breast cancer. An analysis of the historical journey is performed by different contexts related to Psychoeducation, mainly in the care of cancer patients and especially in women survivors of breast cancer. All this is done from the technical, scientific and methodological perspective of science, as it is considered to psychology as a scientific discipline whose conclusions are endorsed by a large and renowned scientific development.
RESUMO
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR.
Assuntos
Neoplasias da Mama/imunologia , Exossomos/metabolismo , Terapia de Imunossupressão/métodos , Animais , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
Introducción: la ansiedad es considerada la reacción más frecuente ante las situaciones estresantes, es indudable su influencia sobre la salud y la enfermedad. Objetivo: evaluar la frecuencia de respuestas cognitivas, fisiológicas y motoras de ansiedad ante situaciones de la vida cotidiana, identificar el nivel general de ansiedad, evaluar las áreas situacionales o rasgos específicos de ansiedad y evaluar la asociación entre sistemas de respuesta y rasgos específicos. Métodos: bajo un paradigma cuantitativo, la investigación siguió un diseño no experimental con un estudio descriptivo, transversal en una muestra seleccionada de manera intencional, de 30 sujetos, todas diagnosticadas con cáncer de mama en intervalo libre de enfermedad, atendidas por el Policlínico Universitario "Chiqui Gómez Lubián", municipio Santa Clara, durante el primer trimestre del 2015. Resultados: en la muestra estudiada la ansiedad como rasgo fue mínima, ubicándose en niveles normales. La respuesta motora fue la más frecuente, mientras que las cognitivas y fisiológicas se encontraban en niveles mínimos. Se identificaron como rasgos específicos: la ansiedad ante situaciones cotidianas (46,7 por ciento) e interpersonal (40 por ciento), que se expresaron de forma moderada. Conclusiones: las pacientes estudiadas se caracterizaron por presentar rasgos específicos de ansiedad ante situaciones habituales o de la vida cotidiana. La respuesta motora fue la más frecuente, que de mantenerse en el tiempo afectarán el bienestar emocional y aumentará la vulnerabilidad ante la enfermedad. Se recomienda ampliar este tipo de estudio a un mayor número de individuos que permitan establecer regularidades para la población(AU)
Introduction: Anxiety is considered the most common reaction to stressful situations; it is now undeniable influence on health and disease. Objective: assess the frequency of cognitive, physiological and motor responses of anxiety in situations of everyday life, identifying the general level of anxiety, situational assess areas or specific traits of anxiety and assess the association between response systems and specific features. Methods: under a quantitative paradigm, research followed a non-experimental design with a descriptive, cross-sectional study on a selected sample intentionally, in 30 subjects, all diagnosed with breast cancer disease-free interval, served by the University Polyclinic "Chiqui Gómez Lubián" Santa Clara municipality, during the first quarter of 2015. Results: in the sample studied trait anxiety is minimal, reaching normal levels. The motor response is the most common, while cognitive and physiological are minimum. They are identified as the specific features daily anxiety (46.7 percent) and interpersonal situations (40 percent), expressed moderately. Conclusions: the patients studied are characterized by specific features of anxiety or common situations of everyday life. The motor response is the most common, which sustained over time affect emotional well-being and increase vulnerability to the disease. It is recommended to extend this type of study to a greater number of individuals that establish regularities for the population(AU)