Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(23): 6110-6128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34775647

RESUMO

Disentangling the relative role of environmental filtering and spatial processes in driving metacommunity structure across mountainous regions remains challenging, as the way we quantify spatial connectivity in topographically and environmentally heterogeneous landscapes can influence our perception of which process predominates. More empirical data sets are required to account for taxon- and context-dependency, but relevant research in understudied areas is often compromised by the taxonomic impediment. Here we used haplotype-level community DNA metabarcoding, enabled by stringent filtering of amplicon sequence variants (ASVs), to characterize metacommunity structure of soil microarthropod assemblages across a mosaic of five forest habitats on the Troodos mountain range in Cyprus. We found similar ß diversity patterns at ASV and species (OTU, operational taxonomic unit) levels, which pointed to a primary role of habitat filtering resulting in the existence of largely distinct metacommunities linked to different forest types. Within-habitat turnover was correlated to topoclimatic heterogeneity, again emphasizing the role of environmental filtering. However, when integrating landscape matrix information for the highly fragmented Quercus alnifolia habitat, we also detected a major role of spatial isolation determined by patch connectivity, indicating that stochastic and niche-based processes synergistically govern community assembly. Alpha diversity patterns varied between ASV and OTU levels, with OTU richness decreasing with elevation and ASV richness following a longitudinal gradient, potentially reflecting a decline of genetic diversity eastwards due to historical pressures. Our study demonstrates the utility of haplotype-level community metabarcoding for characterizing metacommunity structure of complex assemblages and improving our understanding of biodiversity dynamics across mountainous landscapes worldwide.


Assuntos
Mariposas , Solo , Animais , Florestas , Ecossistema , Biodiversidade
3.
Sci Rep ; 8(1): 8781, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884843

RESUMO

A major goal of evolutionary biology is to understand why clades differ dramatically in species richness. A key to this challenge is to uncover the correlates of variation in diversification rate (speciation - extinction) among clades. Here, we explore the relationship between diversification rates and the climatic niches of species and clades among 92 families of terrestrial mammals. We use a time-calibrated molecular phylogeny of mammals and climatic data from 3335 species. We show that considerable variation in net diversification rates among mammal families is explained by niche divergence (59%) and rates of niche change (51%). Diversification rates in turn explain most variation in species richness among families (79%). Contrary to expectations, patterns of diversification are not explained by differences in geographic range areas of clades, nor by their climatic niche position (i.e. whether they are primarily tropical or temperate). Overall, these results suggest that speciation through climatic niche divergence may help drive large-scale patterns of diversification and richness. Our results help explain diversification patterns in a major clade of vertebrates, and suggest that similar underlying principles may explain the diversification of many terrestrial clades.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Clima , Ecossistema , Especiação Genética , Mamíferos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA