Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Turk J Pharm Sci ; 21(2): 88-94, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742755

RESUMO

Objectives: Drug-induced liver injury is a common adverse reaction that frequently occurs with chemotherapeutic agents, such as cisplatin (CIS). This study seeks to enhance our understanding of drug actions and their associated adverse effects by examining the toxicity of CIS on rat liver tissue. We aimed to investigate the potential hepatoprotective effects of irbesartan (IRB), an easily accessible angiotensin II receptor blocker, in mitigating CIS-induced hepatotoxicity. Materials and Methods: Wistar albino rats were divided into four groups. These groups included a control group [saline, per oral (p.o.)] for seven days, and 1 mL saline intraperitoneal [(i.p.) on the fourth day]; a CIS group (1 mL saline for seven days and 7.5 mg/kg CIS i.p. on the fourth day); a CIS + IRB group (IRB: 50 mg/kg p.o. for seven days and 7.5 mg/kg CIS i.p. on the fourth day), and an IRB group (50 mg/kg IRB p.o. for seven days). The effect of IRB on interleukin-1 beta (IL-1ß) and caspase 3 levels was evaluated by immunohistochemical analysis, and its effects on mRNA expression levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and immunoglobulin-heavy-chain-binding protein (BiP) were tested by quantitative real-time polymerase chain reaction. Results: IRB administration mitigated CIS-induced liver toxicity by inhibiting endoplasmic reticulum (ER) stress. Specifically, this drug reduced the mRNA expression of ER stress markers, including CHOP and BiP. In addition, IRB treatment decreased oxidative stress, inflammatory responses, and apoptotic markers. Conclusion: These findings suggest that IRB is a promising therapeutic option for preventing CIS-induced liver injury, potentially by modulating ER stress-related pathways.

2.
BMC Musculoskelet Disord ; 25(1): 164, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383379

RESUMO

BACKGROUND: Knee osteoarthritis is severe progressive and most commonly diagnosed articular disease and its incidence is increasing around the world depending on age. This pathologic condition which limits daily activity of patients can be characterized by degeneration of cartilage and inflammation. Although non-steroidal anti-inflammatory (NSAII) agents and other analgesics are routinely used treatment options, the potential effects of intraarticular injections including hyaluronic acid (HA) have also been demonstrated by various studies. However, few studies compare the efficacy of a single high molecular weight (HMW) high dose and a triple HMW low dose. This study aimed to compare the efficacy of single high molecular weight (HMW) high dose (2 mL / 60 mg) and triple HMW low dose (2 mL /30 mg) intra-articular injection of HA in knee osteoarthritis (OA) patients by evaluating function and pain parameters during 12 months. METHODS: This is a single-center, retrospective clinical study that included and involved 128 patients. Group I (n=64) patients received triple 30 mg HA injections (SEMICAL®) with one-week intervals, while Group II (n=64) patients received a single 60 mg HA injection (SEMICAL®). Lequesne Index, WOMAC and VAS scores were recorded to assess pain and function during a 12-month period. RESULTS: There was no significant difference in characteristics of patient demographics. Our finding indicate that WOMAC, VAS score, and Lequesne Index values during follow-up visits exhibited a decrease, signifying improvement in the clinical condition. Notably, scores were significantly more favorable with the 30 mg of HA injection compared to the 60 mg of HA injection. CONCLUSION: This study suggests that the triple low-dose injection of HMW HA is more effective in improving WOMAC, VAS scores and Lequesne Index values than a single high-dose injection.


Assuntos
Ácido Hialurônico , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/terapia , Viscossuplementos , Peso Molecular , Estudos Retrospectivos , Resultado do Tratamento , Dor/tratamento farmacológico , Injeções Intra-Articulares , Anti-Inflamatórios não Esteroides/uso terapêutico
3.
Turk J Pharm Sci ; 20(6): 368-373, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38254333

RESUMO

Objectives: Prostate cancer (PCa) is a significant health problem in men worldwide. Although there are numerous treatment choices for PCa, acquired resistance limits treatment success. Therefore, there is a need for new approaches as powerful resources for use in alternative or supportive therapeutic strategies for anticancer therapeutics. Theranekron® is a commercially available alcoholic extract of Tarantula cubensis. Recent studies have shown the potent anticancer effect of theranekron in human tumors, including PCa. Herein, we comparatively examined the antiproliferative activity of theranekron and its biochemical action on androgenic signaling and cell cycle-related cyclin proteins in androgen-dependent PCa cells, LNCaP, VCaP, and 22Rv1. Materials and Methods: Human androgen-dependent PCa cells, LNCaP (CRL-1740TM), 22Rv1 (CRL-2505TM), and VCaP (CRL-2876TM) were used to evaluate the effect of theranekron in vitro. The impact of theranekron on cell viability was evaluated using a WST-1-based viability test. Its impact on AR, cyclin A2, cyclin B1, and cyclin E1 was examined by immunoblotting. To test the anti-malignant effect of theranekron on 3D tumor formation of PCa cells, soft agar assay was used. Results: Our results indicated that theranekron treatment significantly reduced the viability of PCa cells. It remarkably decreased the protein levels of AR, cyclin A2, cyclin B1, and cyclin E1 in a dose-dependent manner. In addition, Theranekron administration strongly limited the 3D tumor formation of LNCaP, 22Rv1, and VCaP cells. Conclusion: Our findings strongly suggest that theranekron may offer potent therapeutic efficacy against androgen-dependent PCa cells. Moreover, it may be a potent component for preventing acquired resistance to chemotherapeutics.

4.
J Biochem Mol Toxicol ; 38(1): e23636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229314

RESUMO

Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.


Assuntos
Curcumina , Neoplasias da Próstata , Masculino , Humanos , Degradação Associada com o Retículo Endoplasmático , Curcumina/farmacologia , Receptor alfa de Estrogênio/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Estrogênios/farmacologia
5.
Turk J Pharm Sci ; 20(3): 157-164, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417198

RESUMO

Objectives: Breast cancer is the most frequently diagnosed cancer type and the second leading cause of cancer-related death in women. Recent studies have highlighted the importance of the endoplasmic reticulum (ER) protein quality control mechanism for the survival of many cancers. It has also been recommended as a good target for the treatment of many cancer types. Homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1) functions as one of the main components of ER-associated degradation, which is an ER-resident protein quality mechanism. Today, the association of HERPUD1 with breast carcinogenesis is still not fully understood. Herein, we evaluated the possibility of HERPUD1 as a potential therapeutic target for breast cancer. Materials and Methods: The effects of HERPUD1 silencing on epithelial-mesenchymal transition (EMT), angiogenesis, and cell cycle proteins were analyzed by immunoblotting studies. To test the role of HERPUD1 on tumorigenic features, WST-1-based cell proliferation assay, wound-healing assay, 2D colony formation assay, and Boyden-Chamber invasion assay were performed in human breast cancer cell line MCF-7. The statistical significance of the differences between the groups was determined by Student's t-test. Results: Our results displayed that suppressing HERPUD1 expression reduced the cell cycle-related protein levels, including cyclin A2, cyclin B1, and cyclin E1 in MCF-7 cells. Also, silencing of HERPUD1 remarkably decreased expression levels of EMT-related N-cadherin and angiogenesis marker vascular endothelial growth factor A. Moreover, we determined that cell proliferation, migration, invasion, and colony formation of MCF-7 cells were significantly limited by silencing of HERPUD1. Conclusion: Present data suggest that HERPUD1 may be an effective target for biotechnological and pharmacological strategies to be developed to treat breast cancer.

6.
J Nat Med ; 77(3): 572-583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37130999

RESUMO

Prostate cancer (PCa) is the second most common type of cancer and the sixth cause of death in men worldwide. Radiotherapy and immunotherapy are commonly used in treating PCa, but understanding the crosstalk mechanisms of carcinogenesis and new therapeutic approaches is essential for supporting poor diagnosis and existing therapies. Astaxanthin (ASX) is a member of the xanthophyll family that is an oxygenated derivative of carotenoids whose synthesis is in plant extracts from lycopene. ASX has protective effects on various diseases, such as Parkinson's disease and cancer by showing potent antioxidant and anti-inflammatory properties. However, there is an ongoing need for a detailed investigation of the molecular mechanism of action to expand its therapeutic use. In the present study, we showed the new regulatory role of ASX in PCa cells by affecting the unfolded protein response (UPR) signaling, autophagic activity, epithelial-mesenchymal transition (EMT) and regulating the expression level of angiogenesis-related protein vascular endothelial growth factor A (VEGF-A), proto-oncogene c-Myc and prostate-specific antigen (PSA). Additionally, we determined that it exhibited synergistic action with cisplatin and significantly enhanced apoptotic cell death in PCa cells. Present findings suggest that ASX may be a potent adjuvant therapeutic option in PCa treatment when used alone or combined with chemotherapeutics. Schematic illustration of the biochemical activity of astaxanthin and its combination with cisplatin.


Assuntos
Cisplatino , Neoplasias da Próstata , Masculino , Humanos , Cisplatino/farmacologia , Fator A de Crescimento do Endotélio Vascular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Xantofilas/farmacologia
7.
J Circadian Rhythms ; 21: 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033333

RESUMO

The circadian clock regulates the "push-pull" of the molecular signaling mechanisms that arrange the rhythmic organization of the physiology to maintain cellular homeostasis. In mammals, molecular clock genes tightly arrange cellular rhythmicity. It has been shown that this circadian clock optimizes various biological processes, including the cell cycle and autophagy. Hence, we explored the dynamic crosstalks between the circadian rhythm and endoplasmic reticulum (ER)-quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the most important parts of the ERQC system and is an elaborate surveillance system that eliminates misfolded proteins. It regulates the steady-state levels of several physiologically crucial proteins, such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and the metastasis suppressor KAI1/CD82. However, the circadian oscillation of ERQC members and their roles in cellular rhythmicity requires further investigation. In the present study, we provided a thorough investigation of the circadian rhythmicity of the fifteen crucial ERQC members, including gp78, Hrd1, p97/VCP, SVIP, Derlin1, Ufd1, Npl4, EDEM1, OS9, XTP3B, Sel1L, Ufd2, YOD1, VCIP135 and FAM8A1 in HEK293 cells. We found that mRNA and protein accumulation of the ubiquitin conjugation, binding and processing factors, retrotranslocation-dislocation, substrate recognition and targeting components of ERQC exhibit oscillation under the control of the circadian clock. Moreover, we found that Hrd1 and gp78 have a possible regulatory function on Bmal1 turnover. The findings of the current study indicated that the expression level of ERQC components is fine-tuned by the circadian clock and major ERAD E3 ligases, Hrd1 and gp78, may influence the regulation of circadian oscillation by modulation of Bmal1 stability.

8.
Steroids ; 195: 109238, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37044236

RESUMO

Hepatocellular carcinoma is one of the most common types of primary liver cancer in adults and also it is the third leading cause of cancer-related deaths worldwide. Although there are various treatment options such as surgery, radiation, targeted drug therapy, immunotherapy and chemotherapy, most hepatocellular carcinomas are highly resistant to systemic treatments. Today, the molecular pathogenesis of hepatocellular carcinoma remains largely obscure. Therefore, there is a need for detailed research for the characterization of molecular signaling networks related to the development of hepatocellular carcinoma. Recent studies have attention to the hormonal regulation of hepatocellular carcinoma cells mediated by systemic hormones such as glucocorticoids. However, glucocorticoid-mediated regulation of endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR), which are known to be important survival mechanisms for cancer cells remains unknown in hepatocellular carcinoma. In the present study, we showed that dexamethasone-induced glucocorticoid receptor signaling mediated advanced regulation of ERAD and UPR signaling in hepatocellular carcinoma cells. Our findings indicated that glucocorticoid signaling positively regulated mRNA and protein levels of ERAD components and also protein kinase RNA-like ER Kinase (PERK) and inositol-requiring enzyme 1⍺ (IRE1⍺) branches of UPR signaling are accompanied by the glucocorticoid signaling. In addition, putative glucocorticoid response elements (GREs) were determined in the promoter regions of ERAD members in in-silico analyses. Additionally, silencing of ERAD components significantly reduced the tumorigenic features of hepatocellular carcinoma cells, including cell proliferation, metastasis, invasion and 3D tumor formation. Collectively, these results reveal a novel pattern of regulation of ERAD components by glucocorticoid-mediated in human hepatocellular carcinoma cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Degradação Associada com o Retículo Endoplasmático , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Retículo Endoplasmático/metabolismo , Dexametasona/metabolismo
9.
J Cell Commun Signal ; 17(3): 793-811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36696010

RESUMO

The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/ß/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/ß. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.

10.
Mol Biol Rep ; 50(2): 1253-1265, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445513

RESUMO

BACKGROUND: Today, androgen receptor (AR)-mediated signaling mechanisms in prostate cancer are intensively studied. However, the roles of other steroid hormones in prostate cancer and their effects on androgenic signaling still remain a mystery. Recent studies focused on the androgen-mediated regulation of protein quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer cells. Present study, we investigated the action of progesterone signaling on ERAD and UPR mechanisms and analyzed the crosstalk of progesterone signaling with androgenic signal in prostate cancer cells. METHODS AND RESULTS: The mode of action of progesterone on ERAD, UPR and AR signaling in prostate cancer was investigated by cell culture studies using LNCaP and 22Rv1 cells. To this aim qRT-PCR, western-blotting assay, immunofluorescent microscopy, nuclear fractionation and bioinformatic analysis were used. Our results indicated that progesterone positively regulates mRNA and protein levels of ERAD components in LNCaP cells. Also, it induced the IRE⍺ and PERK branches of UPR signaling. Progesterone receptor antagonist effectively antagonized the progesterone-induced responses. We also had similar results in 22Rv1 cells. Also, we tested the effect of the pharmacologically reducing of IRE⍺ and PERK signaling on progesterone-induced ERAD. Additionally, we determined the presence of putative progesterone response elements (PREs) in the promoter regions of ERAD members by bioinformatic tool. More strikingly, we found progesterone regulates AR signaling by modulating the nuclear transactivation of AR. CONCLUSION: Herein, we defined that progesterone hormone positively regulates ERAD and UPR mechanisms in prostate cancer cells and that progesterone contributes to the molecular biology of prostate cancer by regulating androgenic signaling. Mode of Action of Progesteron on Androgen sensitive prostate cancer cells.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Androgênios/farmacologia , Androgênios/metabolismo , Degradação Associada com o Retículo Endoplasmático , Progesterona/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Resposta a Proteínas não Dobradas , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
11.
Cell Signal ; 103: 110577, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567009

RESUMO

Steroid hormone signaling is critical in the tumor progression and the regulation of physiological mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer. 1,25(OH)2 D3 is an active metabolite of vitamin D classified as a steroid hormone. It exhibits anti-tumor effects, including angiogenesis and suppression of cell cycle progression. Moreover, progressively reducing expression levels of vitamin D receptor (VDR) are observed in many cancer types, including the prostate. In the present study, we investigated the molecular action of 1,25(OH)2 D3 on ERAD, UPR and androgenic signaling. We found that 1,25(OH)2 D3 negatively regulated the expression level of ERAD components and divergently controlled the inositol-requiring enzyme 1⍺ (IRE1⍺) and protein kinase RNA-like ER kinase (PERK) branches of UPR in LNCaP human prostate cancer cells. Also, similar results were obtained with another human prostate cancer cell line, 22Rv1. More strikingly, we found that androgenic signaling is negatively regulated by VDR signaling. Also, molecular docking supported the inhibitory effect of 1,25(OH)2 D3 on AR signaling. Moreover, we found VDR signaling suppressed tumor progression by decreasing c-Myc expression and reducing the epithelial-mesenchymal transition (EMT). Additionally, 1,25(OH)2 D3 treatment significantly inhibited the 3D-tumor formation of LNCaP cells. Our results suggest that further molecular characterization of the action of VDR signaling in other cancer types such as estrogenic signal in breast cancer will provide important contributions to a better understanding of the roles of steroid hormone receptors in carcinogenesis processes.


Assuntos
Neoplasias da Próstata , Receptores de Calcitriol , Humanos , Masculino , Androgênios , Calcitriol/farmacologia , Degradação Associada com o Retículo Endoplasmático , Simulação de Acoplamento Molecular , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Esteroides , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA