Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141019, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641086

RESUMO

The Fragile X messenger ribonucleoprotein (FMRP) is a multi-domain protein involved in interactions with various macromolecules, including proteins and coding/non-coding RNAs. The three KH domains (KH0, KH1 and KH2) within FMRP are recognized for their roles in mRNA binding. In the context of Fragile X syndrome (FXS), over-and-above CGG triplet repeats expansion, three specific point mutations have been identified, each affecting one of the three KH domains (R138QKH0, G266EKH1, and I304NKH2) resulting in the expression of non-functional FMRP. This study aims to elucidate the molecular mechanism underlying the loss of function associated with the G266EKH1 pathological variant. We investigate the conformational and dynamic properties of the isolated KH1 domain and the two KH1 site-directed mutants G266EKH1 and G266AKH1. Employing a combined in vitro and in silico approach, we reveal that the G266EKH1 variant lacks the characteristic features of a folded domain. This observation provides an explanation for functional impairment observed in FMRP carrying the G266E mutation within the KH1 domain, as it renders the domain unable to fold properly. Molecular Dynamics simulations suggest a pivotal role for residue 266 in regulating the structural stability of the KH domains, primarily through stabilizing the α-helices of the domain. Overall, these findings enhance our comprehension of the molecular basis for the dysfunction associated with the G266EKH1 variant in FMRP.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/química , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Domínios Proteicos , Simulação de Dinâmica Molecular , Conformação Proteica , Mutagênese Sítio-Dirigida
2.
Sci Rep ; 13(1): 22692, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123809

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by respiratory failure due to a vicious cycle of defective Cystic Fibrosis Transmembrane conductance Regulator (CFTR) function, chronic inflammation and recurrent bacterial and fungal infections. Although the recent introduction of CFTR correctors/potentiators has revolutionized the clinical management of CF patients, resurgence of inflammation and persistence of pathogens still posit a major concern and should be targeted contextually. On the background of a network-based selectivity that allows to target the same enzyme in the host and microbes with different outcomes, we focused on sphingosine-1-phosphate (S1P) lyase (SPL) of the sphingolipid metabolism as a potential candidate to uniquely induce anti-inflammatory and antifungal activities in CF. As a feasibility study, herein we show that interfering with S1P metabolism improved the immune response in a murine model of CF with aspergillosis while preventing germination of Aspergillus fumigatus conidia. In addition, in an early drug discovery process, we purified human and A. fumigatus SPL, characterized their biochemical and structural properties, and performed an in silico screening to identify potential dual species SPL inhibitors. We identified two hits behaving as competitive inhibitors of pathogen and host SPL, thus paving the way for hit-to-lead and translational studies for the development of drug candidates capable of restraining fungal growth and increasing antifungal resistance.


Assuntos
Fibrose Cística , Humanos , Animais , Camundongos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos de Viabilidade , Inflamação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293035

RESUMO

The K-homology (KH) domains are small, structurally conserved domains found in proteins of different origins characterized by a central conserved ßααß "core" and a GxxG motif in the loop between the two helices of the KH core. In the eukaryotic KHI type, additional αß elements decorate the "core" at the C-terminus. Proteins containing KH domains perform different functions and several diseases have been associated with mutations in these domains, including those in the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein crucial for the control of RNA metabolism whose lack or mutations lead to fragile X syndrome (FXS). Among missense mutations, the R138Q substitution is in the KH0 degenerated domain lacking the classical GxxG motif. By combining equilibrium and kinetic experiments, we present a characterization of the folding mechanism of the KH0 domain from the FMRP wild-type and of the R138Q variant showing that in both cases the folding mechanism implies the accumulation of an on-pathway transient intermediate. Moreover, by exploiting a battery of biophysical techniques, we show that the KH0 domain has the propensity to form amyloid-like aggregates in mild conditions in vitro and that the R138Q mutation leads to a general destabilization of the protein and to an increased fibrillogenesis propensity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Mutação de Sentido Incorreto , Proteínas/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA