Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140084

RESUMO

Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.

2.
Int J Pharm ; 634: 122662, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736675

RESUMO

Growth hormone deficiency has been treated by the daily administration of recombinant human growth hormone (hGH) for decades. Patient compliance to this treatment is generally incomplete due to challenges including dose frequency and lack of perceived benefits. This stimulates the research on new formulations to reduce the number of periodic administrations. In this study silica nanoparticles and silica-collagen nanocomposites were evaluated for hGH loading and release. Bare nanoparticles showed higher hGH adsorption capacity than thiol- and isobutyl-bearing particles of similar diameters. Monitoring of bound protein conformation changes indicated hGH structure retention when adsorbed on bare silica nanoparticles and suggested no alterations on protein activity. Protein-loaded particles incorporated into collagen matrices (silica-collagen nanocomposites) showed a progressive protein release profile different from the observed for hGH-loaded silica nanoparticles and hGH-loaded collagen matrices. While both the collagen and the silica nanoparticle systems reached a 100 % release after 4 and 7 days respectively, silica-collagen nanocomposites showed a bi-phasic prolonged hGH release reaching approximately an 80 % after 15 days. These findings suggest that biocompatible silica-collagen nanocomposites could be used as vehicles for the prolonged delivery of hGH which could lead to a potential reduction in the number of periodic administrations.


Assuntos
Hormônio do Crescimento Humano , Humanos , Hormônio do Crescimento Humano/química , Dióxido de Silício , Colágeno , Composição de Medicamentos , Proteínas Recombinantes , Hormônio do Crescimento
3.
Curr Pharm Biotechnol ; 24(1): 3-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35549874

RESUMO

The green synthesis of nanomaterials is nowadays gaining great attention owing to several beneficial aspects in terms of the low toxicity of reagents and by-products, low damage to the health and the environment, sustainability of energy savings and rational use of natural resources. The intrinsic complexity offered by the biological sources (plants, microorganisms, animal products) and the conditions applied in the synthetic procedures forms various nanomaterials with different sizes, morphologies and surface properties that strongly determine their functionality and applications. A deep understanding of the role of biological components, the mechanism of nanostructure formation and growth, and the effects of green synthesis conditions is of paramount importance to achieving the desired nanomaterial for the required application. In this context, this review aims to provide an overview of the structural and functional complexity of nanomaterials achieved by using green synthesis procedures, with a special focus on the role of biological sources and parameters in controlling the complexity and benefit of nanomaterial applications.


Assuntos
Nanoestruturas , Animais , Nanoestruturas/química , Propriedades de Superfície
4.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214197

RESUMO

Skin tissue engineering and regeneration aim at repairing defective skin injuries and progress in wound healing. Until now, even though several developments are made in this field, it is still challenging to face the complexity of the tissue with current methods of fabrication. In this review, short, state-of-the-art on developments made in skin tissue engineering using 3D bioprinting as a new tool are described. The current bioprinting methods and a summary of bioink formulations, parameters, and properties are discussed. Finally, a representative number of examples and advances made in the field together with limitations and future needs are provided.

5.
Bio Protoc ; 11(2): e3887, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33732776

RESUMO

Antibacterial coatings have currently gained great importance in biomedical technology investigations. Because of the spatial arrangement of the film coatings, evaluation of antibacterial activity presents a new challenge regarding traditional bacterial counting methods. In this protocol, four clinically relevant pathogens, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were incubated on titania mesostructured thin film coatings for 24 h. Then, cell viability was studied considering three methods: counting of the number of colony forming units (CFU), live/dead staining, and quantification of extracellular DNA in suspension. Firstly, bacterial count was determined by the standard plate-count technique. Secondly, bacteria membrane integrity was evaluated by utilization of two fluorescent dyes, which allow distinction between live (membrane intact) and dead (membrane disrupted) bacteria. Lastly, extracellular DNA was quantified by spectrophotometry. In this manner, the three aforementioned techniques enabled the study of bacterial viability by qualitative and quantitative analyses.

6.
Curr Pharm Biotechnol ; 22(6): 823-847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397235

RESUMO

Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.


Assuntos
Nanoestruturas/química , Técnicas de Química Analítica
7.
Artigo em Inglês | MEDLINE | ID: mdl-32850709

RESUMO

In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.

8.
J Photochem Photobiol B ; 203: 111762, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31896049

RESUMO

Activation of photocatalytic titania by ultraviolet-A (UVA) radiation has been proposed as a good approach for combating bacteria. Titania powder, in solution or immobilized on a surface, has excellent UVA-assisted killing properties on several microorganisms. However, these properties could not be demonstrated in biofilms of Pseudomonas aeruginosa, a resistant opportunistic human pathogen that can cause severe complications in patients who are immunocompromised or have burn wounds or cystic fibrosis. P. aeruginosa biofilms have detrimental effects on health and industry, causing serious economic damage. In this study, the effect of titania photocatalysis for controlling P. aeruginosa biofilms was investigated by employing different coatings obtained through sol-gel and evaporation-induced self-assembly. Biofilms were grown on non-mesoporous and mesoporous titania surfaces with different pore sizes, which were achieved based on the use of surfactants Brij-58 and Pluronics-F127. In addition, two structural forms of titania were assayed: amorphous and anatase. As well as inhibiting biofilm formation, these coatings significantly enhanced the bactericidal effect of UVA on P. aeruginosa biofilms. The most efficient surface with regard to total antibacterial effect was the mesoporous Brij-58-templated anatase film, which, compared to control biofilms, decreased the number of viable bacteria by about 5 orders, demonstrating the efficacy of this methodology as a disinfection system.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pseudomonas aeruginosa/fisiologia , Titânio/química , Raios Ultravioleta , Biofilmes/efeitos da radiação , Catálise , Nanopartículas Metálicas/química , Porosidade , Tensoativos/química
9.
Colloids Surf B Biointerfaces ; 178: 214-221, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30870788

RESUMO

Poloxamer block copolymers (also known as Pluronic®) are particularly useful for drug delivery and self-assembly techniques. These nanopolymers are generally considered to be biologically inert and they were used to generate only bacteria repellent surfaces but keeps bacteria alive and as a latent threat. However, the inherent capabilities of these nanopolymers to kill bacteria have been largely overlooked. Here, we report that Pluronic shaped as superstructures (self-organized array of micelles) in fact possess a broad-spectrum bactericidal activity (capability of killing bacteria) similar to that shown for some antibiotics. This further represents the first report that shows that appropriate control of superstructured mesophase architecture is a key parameter for bactericidal efficacy. Based on this finding, we have developed a highly bactericidal coating (>99.9% kill) against all tested Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhimurium LT2, Escherichia coli K12 and Pseudomonas aeruginosa PAO1) bacteria which moreover allows the adhesion and proliferation of mammalian cells. The inexpensiveness and ease of production make these versatile nanopolymer structures a powerful tool for the development of a new generation of highly effective antimicrobial coatings.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanoestruturas/química , Poloxâmero/química , Poloxâmero/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
10.
Cell Mol Neurobiol ; 39(2): 169-180, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656469

RESUMO

A multistep signaling cascade originates in brain centers that regulate hypothalamic growth hormone-releasing hormone (Ghrh) and somatostatin expression levels and release to control the pattern of GH secretion. This process is sexually fine-tuned, and relays important information to the liver where GH receptors can be found. The temporal pattern of pituitary GH secretion, which is sex-specific in many species (episodic in males and more stable in females), represents a major component in establishing and maintaining the sexual dimorphism of hepatic gene transcription. The liver is sexually dimorphic exhibiting major differences in the profile of more than 1000 liver genes related to steroid, lipid, and foreign compound metabolism. Approximately, 90% of these sex-specific liver genes were shown to be primarily dependent on sexually dimorphic GH secretory patterns. This proposes an interesting scenario in which the central nervous system, indirectly setting GH profiles through GHRH and somatostatin control, regulates sexual dimorphism of liver activity in accordance with the need for sex-specific steroid metabolism and performance. We describe the influence of the loss of sexual dimorphism in liver gene expression due to altered brain function. Among other many factors, abnormal brain sexual differentiation, xenoestrogen exposure and D2R ablation from neurons dysregulate the GHRH-GH axis, and ultimately modify the liver capacity for adaptive mechanisms. We, therefore, propose that an inefficient brain control of the endocrine growth axis may underlie alterations in several metabolic processes through an indirect influence of sexual dimorphism of liver genes.


Assuntos
Encéfalo/fisiopatologia , Sistema Endócrino/fisiopatologia , Hepatopatias/fisiopatologia , Fígado/fisiopatologia , Caracteres Sexuais , Animais , Epigênese Genética , Feminino , Humanos , Hepatopatias/genética , Masculino
11.
Mater Sci Eng C Mater Biol Appl ; 77: 1044-1049, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531977

RESUMO

Bacteria attached to solid surfaces and encased in a self-synthesized matrix, so-called biofilms, are highly difficult to eradicate and present negative impact on industry and human health. The ability of supramolecularly templated mesoporous silica coatings to inhibit biofilm formation in Pseudomonas aeruginosa is shown here. Assays employing submerged and air-liquid interface biofilms demonstrated that mesoporous coatings with tuned pore size significantly reduce the number of attached bacteria and matrix production. Given its versatility, scalability, robustness and low cost, our proposal is attractive for the production of transparent, inert and permanent antibiofilm coatings that could be applied on multiple surfaces.


Assuntos
Antibacterianos/farmacologia , Dióxido de Silício/farmacologia , Bactérias , Biofilmes , Porosidade , Pseudomonas aeruginosa
12.
Curr Pharm Biotechnol ; 17(5): 439-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26956109

RESUMO

We present a brief survey of some of the recent work of Professor Luis E. Díaz, performed together with his students and collaborators at the University of Buenos Aires. Dr Luis E. Díaz has been involved in research on biochemical and pharmaceutical sciences solving scientific and industry problems for over 40 years until he passed away. Prof. Díaz scientific interests included various topics from NMR spectroscopy to biomedicine but fundamentally he focused in various aspects of chemistry (analytical, organic, inorganic and environmental). This is not a complete survey but a sampling of prominent projects related to sol-gel chemistry with a focus on some of his recent publications.


Assuntos
Materiais Biocompatíveis/química , Transição de Fase , Antibacterianos/química , Humanos , Nanoestruturas/química , Propriedades de Superfície
13.
Bioelectrochemistry ; 106(Pt A): 14-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26187442

RESUMO

Evolution of fuel cells using metallic inorganic catalysts has led to the development of biofuel cells with potential applications in implantable devices. However, the main disadvantages in real world applications of enzymatic biofuel cells are short lifetime and low power density. Many efforts have been devoted to immobilize redox enzymes on surfaces to allow efficient electrical communication with electrodes and to provide an adequate habitat for biochemical activity. In this context, nanocavities of mesoporous materials offer a tailored environment for protein immobilization. Mesostructured platforms with high surface area and stability have been developed to enhance mass transport, charge transfer from biocatalysts to electrodes and enzyme stability, leading to biofuel cells with improved power density (up to 602 µW cm(-2) at physiological conditions) and overall performance (high stability after 30 h of continuous operation and after 10 days of storage). This review discusses recent developments using mesoporous materials as novel platforms for effective electronic charge transfer in the context of current and emerging technologies in enzymatic fuel cell research, emphasizing their practical implications and potential improvements leading to a major impact on medical science and portable electronics.


Assuntos
Fontes de Energia Bioelétrica , Enzimas Imobilizadas/química , Benchmarking , Carbono/química , Transporte de Elétrons , Porosidade
14.
Cancer Lett ; 359(1): 9-19, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597786

RESUMO

Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Portadores de Fármacos , Nanomedicina/métodos , Nanoestruturas , Neoplasias/tratamento farmacológico , Oxidantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antioxidantes/efeitos adversos , Antioxidantes/química , Química Farmacêutica , Desenho de Fármacos , Humanos , Nanomedicina/tendências , Neoplasias/metabolismo , Neoplasias/patologia , Oxidantes/efeitos adversos , Oxidantes/química , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Microambiente Tumoral
15.
Neuroendocrinology ; 98(3): 212-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080944

RESUMO

BACKGROUND/AIMS: Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. METHODS: PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). RESULTS: GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. CONCLUSION: We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.


Assuntos
Glutamato Descarboxilase/deficiência , Hormônio Liberador de Gonadotropina/deficiência , Hipotálamo Médio/metabolismo , Kisspeptinas/deficiência , Precursores de Proteínas/deficiência , Receptores de GABA-B/deficiência , Diferenciação Sexual/genética , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/genética , Hormônio Liberador de Gonadotropina/genética , Hipotálamo Médio/crescimento & desenvolvimento , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Precursores de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de GABA-B/genética
16.
Small ; 9(20): 3374-84, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23677651

RESUMO

Fertilization is central to the survival and propagation of a species, however, the precise mechanisms that regulate the sperm's journey to the egg are not well understood. In nature, the sperm has to swim through the cervical mucus, akin to a microfluidic channel. Inspired by this, a simple, cost-effective microfluidic channel is designed on the same scale. The experimental results are supported by a computational model incorporating the exhaustion time of sperm.


Assuntos
Movimento Celular , Microfluídica/métodos , Espermatozoides/citologia , Animais , Separação Celular , Simulação por Computador , Humanos , Masculino , Camundongos , Fatores de Tempo
17.
Nanomedicine (Lond) ; 6(6): 1115-29, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21955080

RESUMO

Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 µl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods.


Assuntos
Criopreservação/métodos , Vitrificação , Crioprotetores
18.
Lab Chip ; 11(15): 2535-40, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21677993

RESUMO

5.3 million American couples of reproductive age (9%) are affected by infertility, among which male factors account for up to 50% of cases, which necessitates the identification of parameters defining sperm quality, including sperm count and motility. In vitro fertilization (IVF) with or without intra cytoplasmic sperm injection (ICSI) has become the most widely used assisted reproductive technology (ART) in modern clinical practice to overcome male infertility challenges. One of the obstacles of IVF and ICSI lies in identifying and isolating the most motile and presumably healthiest sperm from semen samples that have low sperm counts (oligozoospermia) and/or low sperm motility (oligospermaesthenia). Microfluidic systems have shown potential to sort sperm with flow systems. However, the small field of view (FOV) of conventional microscopes commonly used to image sperm motion presents challenges in tracking a large number of sperm cells simultaneously. To address this challenge, we have integrated a lensless charge-coupled device (CCD) with a microfluidic chip to enable wide FOV and automatic recording as the sperm move inside a microfluidic channel. The integrated system enables the sorting and tracking of a population of sperm that have been placed in a microfluidic channel. This channel can be monitored in both horizontal and vertical configuration similar to a swim-up column method used clinically. Sperm motilities can be quantified by tracing the shadow paths for individual sperm. Moreover, as the sperm are sorted by swimming from the inlet towards the outlet of a microfluidic channel, motile sperm that reach the outlet can be extracted from the channel at the end of the process. This technology can lead to methods to evaluate each sperm individually in terms of motility response in a wide field of view, which could prove especially useful, when working with oligozoospermic or oligospermaesthenic samples, in which the most motile sperm need to be isolated from a pool of small number of sperm.


Assuntos
Separação Celular , Citometria por Imagem , Técnicas Analíticas Microfluídicas , Motilidade dos Espermatozoides , Espermatozoides/citologia , Animais , Separação Celular/instrumentação , Separação Celular/métodos , Humanos , Citometria por Imagem/instrumentação , Citometria por Imagem/métodos , Masculino , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
19.
Recent Pat Biotechnol ; 5(1): 54-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21517744

RESUMO

Drug delivery systems are designed to improve therapy efficacy as well as patient compliance. This could be accomplished by specifically targeting a medication intact to its active site, therefore reducing side-effects and enabling high local drug concentrations. Silica nanoparticles have gained ground in the biomedical field for their biocompatibility and biodegradability, being themselves inert and stable, thus enabling a variety of formulation designs for application in the pharmaceutical industry. This paper is a review of the recent patents on the applications of silica nanoparticles for drug delivery and their preparation. The review will focus on the different techniques available to obtain silica nanoparticles with variable morphology and their drug targeting applications, providing an overview of silica particles synthesis described in the literature.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Patentes como Assunto , Dióxido de Silício/química , Emulsões/química , Humanos , Magnetismo , Preparações Farmacêuticas/química
20.
Am J Physiol Endocrinol Metab ; 298(3): E683-96, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20009027

RESUMO

GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.


Assuntos
Encéfalo/metabolismo , Glutamato Descarboxilase/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores de GABA-B/metabolismo , Caracteres Sexuais , Animais , Feminino , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transdução de Sinais/fisiologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA