Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553595

RESUMO

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Ciclofilina A/genética , Ciclofilina A/metabolismo , Proteínas de Ligação a RNA , Células-Tronco Hematopoéticas/metabolismo
2.
Science ; 381(6662): eabn4180, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676964

RESUMO

Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Endorribonucleases , Inibidores Enzimáticos , MAP Quinases Reguladas por Sinal Extracelular , Fatores de Transcrição de Choque Térmico , Neoplasias , Proteostase , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo
3.
iScience ; 26(9): 107596, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664586

RESUMO

Recent studies suggest that infection reprograms hematopoietic stem and progenitor cells (HSPCs) to enhance innate immune responses upon secondary infectious challenge, a process called "trained immunity." However, the specificity and cell types responsible for this response remain poorly defined. We established a model of trained immunity in mice in response to Mycobacterium avium infection. scRNA-seq analysis revealed that HSPCs activate interferon gamma-response genes heterogeneously upon primary challenge, while rare cell populations expand. Macrophages derived from trained HSPCs demonstrated enhanced bacterial killing and metabolism, and a single dose of recombinant interferon gamma exposure was sufficient to induce similar training. Mice transplanted with influenza-trained HSPCs displayed enhanced immunity against M. avium challenge and vice versa, demonstrating cross protection against antigenically distinct pathogens. Together, these results indicate that heterogeneous responses to infection by HSPCs can lead to long-term production of bone marrow derived macrophages with enhanced function and confer cross-protection against alternative pathogens.

4.
Nat Commun ; 14(1): 2028, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041140

RESUMO

Mitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.


Assuntos
Erros Inatos do Metabolismo , Humanos , Lactente , Erros Inatos do Metabolismo/genética , Mitocôndrias , Mutação , Domínios Proteicos , Proteínas de Choque Térmico/metabolismo
5.
Sci Adv ; 8(46): eabq0615, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383649

RESUMO

Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.


Assuntos
Neoplasias Pulmonares , Fuligem , Camundongos , Animais , Fuligem/metabolismo , Material Particulado/efeitos adversos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Macrófagos , Pulmão/metabolismo , Carbono/metabolismo , Microambiente Tumoral
6.
Proteins ; 90(6): 1242-1246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122310

RESUMO

Hsp100 is an ATP-dependent unfoldase that promotes protein disaggregation or facilitates the unfolding of aggregation-prone polypeptides marked for degradation. Recently, new Hsp100 functions are emerging. In Plasmodium, an Hsp100 drives malaria protein export, presenting a novel drug target. Whether Hsp100 has a similar function in other protists is unknown. We present the 1.06 Å resolution crystal structure of the Hsp100 N-domain from Leishmania spp., the causative agent of leishmaniasis in humans. Our structure reveals a network of methionines and aromatic amino acids that define the putative substrate-binding site and likely evolved to protect Hsp100 from oxidative damage in host immune cells.


Assuntos
Proteínas de Choque Térmico , Leishmania , Sítios de Ligação , Proteínas de Choque Térmico/química , Humanos , Leishmania/metabolismo , Chaperonas Moleculares/química , Peptídeos/química
7.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159073

RESUMO

The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.

8.
Cancer Res Commun ; 2(12): 1693-1710, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36846090

RESUMO

Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.


Assuntos
Cromatina , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Genes myc
9.
PLoS One ; 16(9): e0254557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473704

RESUMO

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-ß, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)-derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.


Assuntos
Colágeno Tipo VI/metabolismo , Fibrose/tratamento farmacológico , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Peptídeos/farmacologia , Subunidades Proteicas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibrose/metabolismo , Fibrose/patologia , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Ratos , Transdução de Sinais
10.
Metabolites ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204343

RESUMO

Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.

11.
Aging Cell ; 20(8): e13432, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247441

RESUMO

The rise of life expectancy of the human population is accompanied by the drastic increases of age-associated diseases, in particular Alzheimer's disease (AD), and underscores the need to understand how aging influences AD development. The Forkhead box O transcription factor 3 (FoxO3) is known to mediate aging and longevity downstream of insulin/insulin-like growth factor signaling across species. However, its function in the adult brain under physiological and pathological conditions is less understood. Here, we report a region and cell-type-specific regulation of FoxO3 in the central nervous system (CNS). We found that FoxO3 protein levels were reduced in the cortex, but not hippocampus, of aged mice. FoxO3 was responsive to insulin/AKT signaling in astrocytes, but not neurons. Using CNS Foxo3-deficient mice, we reveal that loss of FoxO3 led to cortical astrogliosis and altered lipid metabolism. This is associated with impaired metabolic homoeostasis and ß-amyloid (Aß) uptake in primary astrocyte cultures. These phenotypes can be reversed by expressing a constitutively active FOXO3 but not a FOXO3 mutant lacking the transactivation domain. Loss of FoxO3 in 5xFAD mice led to exacerbated Aß pathology and synapse loss and altered local response of astrocytes and microglia in the vicinity of Aß plaques. Astrocyte-specific overexpression of FOXO3 displayed opposite effects, suggesting that FoxO3 functions cell autonomously to mediate astrocyte activity and also interacts with microglia to address Aß pathology. Our studies support a protective role of astroglial FoxO3 against brain aging and AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Proteína Forkhead Box O3/deficiência , Metabolismo dos Lipídeos/fisiologia , Doença de Alzheimer/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transfecção
12.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671345

RESUMO

Multiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly population in the US. Proteasome inhibitors are an essential part of several standard drug combinations used to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation and lead to the accumulation of damaged proteins inside cells. Despite promising initial responses, multiple myeloma cells eventually become drug resistant in most patients. The biology behind relapsed/refractory multiple myeloma is complex and poorly understood. Several studies provide evidence that in addition to the proteasome, mitochondrial proteases can also contribute to protein quality control outside of mitochondria. We therefore hypothesized that mitochondrial proteases might counterbalance protein degradation in cancer cells treated with proteasome inhibitors. Using clinical and experimental data, we found that overexpression of the mitochondrial matrix protease LonP1 (Lon Peptidase 1) reduces the efficacy of proteasome inhibitors. Some proteasome inhibitors partially crossinhibit LonP1. However, we show that the resistance effect of LonP1 also occurs when using drugs that do not block this protease, suggesting that LonP1 can compensate for loss of proteasome activity. These results indicate that targeting both the proteasome and mitochondrial proteases such as LonP1 could be beneficial for treatment of multiple myeloma.

13.
Nat Cell Biol ; 22(10): 1162-1169, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958856

RESUMO

Stem cells need to be protected from genotoxic and proteotoxic stress to maintain a healthy pool throughout life1-3. Little is known about the proteostasis mechanism that safeguards stem cells. Here we report endoplasmic reticulum-associated degradation (ERAD) as a protein quality checkpoint that controls the haematopoietic stem cell (HSC)-niche interaction and determines the fate of HSCs. The SEL1L-HRD1 complex, the most conserved branch of ERAD4, is highly expressed in HSCs. Deletion of Sel1l led to niche displacement of HSCs and a complete loss of HSC identity, and allowed highly efficient donor-HSC engraftment without irradiation. Mechanistic studies identified MPL, the master regulator of HSC identity5, as a bona fide ERAD substrate that became aggregated in the endoplasmic reticulum following ERAD deficiency. Restoration of MPL signalling with an agonist partially rescued the number and reconstitution capacity of Sel1l-deficient HSCs. Our study defines ERAD as an essential proteostasis mechanism to safeguard a healthy stem cell pool by regulating the stem cell-niche interaction.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Receptores de Trombopoetina/metabolismo , Nicho de Células-Tronco , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Trombopoetina/genética , Ubiquitina-Proteína Ligases/genética
14.
Sci Rep ; 10(1): 13942, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811853

RESUMO

Transcription is regulated through a dynamic interplay of DNA-associated proteins, and the composition of gene-regulatory complexes is subject to continuous adjustments. Protein alterations include post-translational modifications and elimination of individual polypeptides. Spatially and temporally controlled protein removal is, therefore, essential for gene regulation and accounts for the short half-life of many transcription factors. The ubiquitin-proteasome system is responsible for site- and target-specific ubiquitination and protein degradation. Specificity of ubiquitination is conferred by ubiquitin ligases. Cullin-RING complexes, the largest family of ligases, require multi-unit assembly around one of seven cullin proteins. To investigate the direct role of cullins in ubiquitination of DNA-bound proteins and in gene regulation, we analyzed their subcellular locations and DNA-affinities. We found CUL4A and CUL7 to be largely excluded from the nucleus, whereas CUL4B was primarily nuclear. CUL1,2,3, and 5 showed mixed cytosolic and nuclear expression. When analyzing chromatin affinity of individual cullins, we discovered that CUL1 preferentially associated with active promoter sequences and co-localized with 23% of all DNA-associated protein degradation sites. CUL1 co-distributed with c-MYC and specifically repressed nuclear-encoded mitochondrial and splicing-associated genes. These studies underscore the relevance of spatial control in chromatin-associated protein ubiquitination and define a novel role for CUL1 in gene repression.


Assuntos
Cromatina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Genes myc , Células HeLa , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Cell Metab ; 29(6): 1274-1290.e9, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30930169

RESUMO

Telomere shortening is associated with stem cell decline, fibrotic disorders, and premature aging through mechanisms that are incompletely understood. Here, we show that telomere shortening in livers of telomerase knockout mice leads to a p53-dependent repression of all seven sirtuins. P53 regulates non-mitochondrial sirtuins (Sirt1, 2, 6, and 7) post-transcriptionally through microRNAs (miR-34a, 26a, and 145), while the mitochondrial sirtuins (Sirt3, 4, and 5) are regulated in a peroxisome proliferator-activated receptor gamma co-activator 1 alpha-/beta-dependent manner at the transcriptional level. Administration of the NAD(+) precursor nicotinamide mononucleotide maintains telomere length, dampens the DNA damage response and p53, improves mitochondrial function, and, functionally, rescues liver fibrosis in a partially Sirt1-dependent manner. These studies establish sirtuins as downstream targets of dysfunctional telomeres and suggest that increasing Sirt1 activity alone or in combination with other sirtuins stabilizes telomeres and mitigates telomere-dependent disorders.


Assuntos
Cirrose Hepática/genética , Sirtuínas/genética , Encurtamento do Telômero/fisiologia , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Homeostase do Telômero/fisiologia , Encurtamento do Telômero/efeitos dos fármacos , Encurtamento do Telômero/genética
16.
Prog Mol Biol Transl Sci ; 155: 85-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29653684

RESUMO

Metabolic changes are hallmarks of aging and genetic and pharmacologic alterations of relevant pathways can extend life span. In this review, we will outline how cellular biochemistry and energy homeostasis change during aging. We will highlight protein quality control, mitochondria, epigenetics, nutrient-sensing pathways, as well as the interplay between these systems with respect to their impact on cellular health.


Assuntos
Envelhecimento/metabolismo , Metabolismo , Animais , Núcleo Celular/metabolismo , Alimentos , Humanos , Mitocôndrias/metabolismo , Proteostase
17.
FEBS Lett ; 590(7): 908-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26832397

RESUMO

The recruitment of transcription factors to promoters and enhancers is a critical step in gene regulation. Many of these proteins are quickly removed from DNA after they completed their function. Metabolic genes in particular are dynamically regulated and continuously adjusted to cellular requirements. Transcription factors controlling metabolism are therefore under constant surveillance by the ubiquitin-proteasome system, which can degrade DNA-bound proteins in a site-specific manner. Several of these metabolic transcription factors are critical to cancer cells, as they promote uncontrolled growth and proliferation. This review highlights recent findings in the emerging field of nuclear proteolysis and outlines novel paradigms for cancer treatment, with an emphasis on multiple myeloma.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/uso terapêutico , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
18.
Cell ; 155(6): 1380-95, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315104

RESUMO

Transcription factor activity and turnover are functionally linked, but the global patterns by which DNA-bound regulators are eliminated remain poorly understood. We established an assay to define the chromosomal location of DNA-associated proteins that are slated for degradation by the ubiquitin-proteasome system. The genome-wide map described here ties proteolysis in mammalian cells to active enhancers and to promoters of specific gene families. Nuclear-encoded mitochondrial genes in particular correlate with protein elimination, which positively affects their transcription. We show that the nuclear receptor corepressor NCoR1 is a key target of proteolysis and physically interacts with the transcription factor CREB. Proteasome inhibition stabilizes NCoR1 in a site-specific manner and restrains mitochondrial activity by repressing CREB-sensitive genes. In conclusion, this functional map of nuclear proteolysis links chromatin architecture with local protein stability and identifies proteolytic derepression as highly dynamic in regulating the transcription of genes involved in energy metabolism.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Correpressor 1 de Receptor Nuclear/metabolismo , Proteólise , Elementos Reguladores de Transcrição , Animais , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Mitocôndrias/metabolismo , Ubiquitinação
19.
Nat Med ; 19(11): 1513-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24162813

RESUMO

Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSCs) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM) and may be the cause of relapse following chemotherapy. Targeting the niche is a new strategy to eliminate persistent and drug-resistant LSCs. CD44 (refs. 3,4) and interleukin-6 (ref. 5) have been implicated previously in the LSC niche. Transforming growth factor-ß1 (TGF-ß1) is released during bone remodeling and plays a part in maintenance of CML LSCs, but a role for TGF-ß1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor attenuates BCR-ABL1 oncogene-induced CML-like myeloproliferative neoplasia (MPN) but enhances MLL-AF9 oncogene-induced AML in mouse transplantation models, possibly through opposing effects of increased TGF-ß1 on the respective LSCs. PTH treatment caused a 15-fold decrease in LSCs in wild-type mice with CML-like MPN and reduced engraftment of immune-deficient mice with primary human CML cells. These results demonstrate that LSC niches in CML and AML are distinct and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSCs, a prerequisite for the cure of CML.


Assuntos
Medula Óssea/metabolismo , Medula Óssea/patologia , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Feminino , Genes abl , Humanos , Leucemia Mieloide/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
20.
Blood ; 112(2): 211-2, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606878
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA