Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37374658

RESUMO

Metal oxide thermal reduction, enabled by microwave-induced plasma, was used to synthesize high entropy borides (HEBs). This approach capitalized on the ability of a microwave (MW) plasma source to efficiently transfer thermal energy to drive chemical reactions in an argon-rich plasma. A predominantly single-phase hexagonal AlB2-type structural characteristic of HEBs was obtained by boro/carbothermal reduction as well as by borothermal reduction. We compare the microstructural, mechanical, and oxidation resistance properties using the two different thermal reduction approaches (i.e., with and without carbon as a reducing agent). The plasma-annealed HEB (Hf0.2, Zr0.2, Ti0.2, Ta0.2, Mo0.2)B2 made via boro/carbothermal reduction resulted in a higher measured hardness (38 ± 4 GPa) compared to the same HEB made via borothermal reduction (28 ± 3 GPa). These hardness values were consistent with the theoretical value of ~33 GPa obtained by first-principles simulations using special quasi-random structures. Sample cross-sections were evaluated to examine the effects of the plasma on structural, compositional, and mechanical homogeneity throughout the HEB thickness. MW-plasma-produced HEBs synthesized with carbon exhibit a reduced porosity, higher density, and higher average hardness when compared to HEBs made without carbon.

2.
Materials (Basel) ; 14(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885322

RESUMO

Boron nitride (BN) is primarily a synthetically produced advanced ceramic material. It is isoelectronic to carbon and, like carbon, can exist as several polymorphic modifications. Microwave plasma chemical vapor deposition (MPCVD) of metastable wurtzite boron nitride is reported for the first time and found to be facilitated by the application of direct current (DC) bias to the substrate. The applied negative DC bias was found to yield a higher content of sp3 bonded BN in both cubic and metastable wurtzite structural forms. This is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Nano-indentation measurements reveal an average coating hardness of 25 GPa with some measurements as high as 31 GPa, consistent with a substantial fraction of sp3 bonding mixed with the hexagonal sp2 bonded BN phase.

3.
Materials (Basel) ; 14(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805705

RESUMO

Boron-rich B-C compounds with high hardness have been recently synthesized by the chemical vapor deposition (CVD) method. In this paper, we present our successful efforts in the selective growth of microstructures of boron-carbon compounds on silicon substrates. This was achieved by combining microfabrication techniques such as maskless lithography and sputter deposition with the CVD technique. Our characterization studies on these B-C microstructures showed that they maintain structural and mechanical properties similar to that of their thin-film counterparts. The methodology presented here paves the way for the development of microstructures for microelectromechanical system (MEMS) applications which require custom hardness and strength properties. These hard B-C microstructures are an excellent choice as support structures in MEMS-based devices.

4.
Materials (Basel) ; 13(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824358

RESUMO

Superhard boron-rich boron carbide coatings were deposited on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) under controlled conditions, which led to either a disordered or crystalline structure, as measured by X-ray diffraction. The control of either disordered or crystalline structures was achieved solely by the choice of the sample being placed either directly on top of the sample holder or within an inset of the sample holder, respectively. The carbon content in the B-C bonded disordered and crystalline coatings was 6.1 at.% and 4.5 at.%, respectively, as measured by X-ray photoelectron spectroscopy. X-ray diffraction analysis of the crystalline coating provided a good match with a B50C2-type structure in which two carbon atoms replaced boron in the α-tetragonal B52 structure, or in which the carbon atoms occupied different interstitial sites. Density functional theory predictions were used to evaluate the dynamical stability of the potential B50C2 structural forms and were consistent with the measurements. The measured nanoindentation hardness of the coatings was as high as 64 GPa, well above the 40 GPa threshold for superhardness.

5.
J Mater Chem B ; 8(14): 2814-2825, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163093

RESUMO

We report a novel and facile organosilane plasma polymerization method designed to improve the surface characteristics of poly(tetrafluoroethylene) (PTFE). We hypothesized that the polymerized silane coating would provide an adhesive surface for endothelial cell proliferation due to a large number of surface hydroxyl groups, while the large polymer networks on the surface of PTFE would hinder platelet attachment. The plasma polymerized PTFE surfaces were then systematically characterized via different analytical techniques such as FTIR, XPS, XRD, Contact angle, and SEM. The key finding of the characterization is the time-dependent deposition of an organosilane layer on the surface of PTFE. This layer was found to provide favorable surface properties to PTFE such as a very high surface oxygen content, high hydrophilicity and improved surface mechanics. Additionally, in vitro cellular studies were conducted to determine the bio-interface properties of the plasma-treated and untreated PTFE. The important results of these experiments were rapid endothelial cell growth and decreased platelet attachment on the plasma-treated PTFE compared to untreated PTFE. Thus, this new surface modification technique could potentially address the current challenges associated with PTFE for blood contact applications, specifically poor endothelial cell growth and risk of thrombosis.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Organossilício/farmacologia , Politetrafluoretileno/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Plaquetas/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Compostos de Organossilício/síntese química , Compostos de Organossilício/química , Tamanho da Partícula , Adesividade Plaquetária/efeitos dos fármacos , Polimerização , Propriedades de Superfície
6.
Sci Rep ; 10(1): 4454, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157150

RESUMO

Density functional theory predictions have been combined with the microwave-plasma chemical vapor deposition technique to explore metastable synthesis of boron-rich boron-carbide materials. A thin film synthesis of high-hardness (up to 37 GPa) B50C2 via chemical vapor deposition was achieved. Characterization of the experimental crystal structure matches well with a new theoretical model structure, with carbon atoms inserted into the boron icosahedra and 2b sites in a α-tetragonal B52 base structure. Previously reported metallic B50C2 structures with carbons inserted only into the 2b or 4c sites are found to be dynamically unstable. The newly predicted structure is insulating and dynamically stable, with a computed hardness value and electrical properties in excellent agreement with the experiment. The present study thus validates the density functional theory calculations of stable crystal structures in boron-rich boron-carbide system and provides a pathway for large-area synthesis of novel materials by the chemical vapor deposition method.

7.
Materials (Basel) ; 12(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261849

RESUMO

Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of 3.4 ± 1.8 µm and 3.1 ± 1.9 µm for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV- and NV0) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV-/NV0 emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer.

8.
Materials (Basel) ; 11(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044407

RESUMO

Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values.

9.
Sci Rep ; 8(1): 1402, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362393

RESUMO

Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCD were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.

10.
J Coat Technol Res ; 13(2): 385-393, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26989457

RESUMO

Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE).

11.
Nanotechnology ; 25(4): 045302, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24394286

RESUMO

We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.


Assuntos
Nanodiamantes/química , Silício/química , Materiais Biocompatíveis/química , Cristalização , Sistemas de Liberação de Medicamentos , Umidade , Luz , Luminescência , Teste de Materiais , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanotecnologia , Fotoquímica , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Raios Ultravioleta
12.
J Appl Phys ; 113(4): 44701, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23441101

RESUMO

Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ∼255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N(2) in a H(2) + CH(4) feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ∼ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V)(-) at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

13.
J Nanosci Nanotechnol ; 12(6): 4825-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905536

RESUMO

Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.


Assuntos
Cristalização/métodos , Diamante/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Tungstênio/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
Acta Biomater ; 8(5): 1939-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22342422

RESUMO

Nanostructured diamond coatings improve the smoothness and wear characteristics of the metallic component of total hip replacements and increase the longevity of these implants, but the effect of nanodiamond wear debris on macrophages needs to be determined to estimate the long-term inflammatory effects of wear debris. The objective was to investigate the effect of the size of synthetic nanodiamond particles on macrophage proliferation (BrdU incorporation), apoptosis (Annexin-V flow cytometry), metabolic activity (WST-1 assay) and inflammatory cytokine production (qPCR). RAW 264.7 macrophages were exposed to varying sizes (6, 60, 100, 250 and 500 nm) and concentrations (0, 10, 50, 100 and 200 µg ml(-1)) of synthetic nanodiamonds. We observed that cell proliferation but not metabolic activity was decreased with nanoparticle sizes of 6-100 nm at lower concentrations (50 µg ml(-1)), and both cell proliferation and metabolic activity were significantly reduced with nanodiamond concentrations of 200 µg ml(-1). Flow cytometry indicated a significant reduction in cell viability due to necrosis irrespective of particle size. Nanodiamond exposure significantly reduced gene expression of tumor necrosis factor-α, interleukin-1ß, chemokine Ccl2 and platelet-derived growth factor compared to serum-only controls or titanium oxide (anatase 8 nm) nanoparticles, with variable effects on chemokine Cxcl2 and vascular endothelial growth factor. In general, our study demonstrates a size and concentration dependence of macrophage responses in vitro to nanodiamond particles as possible wear debris from diamond-coated orthopedic joint implants.


Assuntos
Diamante/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Células Cultivadas , Humanos , Teste de Materiais , Tamanho da Partícula
15.
J Am Soc Mass Spectrom ; 22(10): 1872-84, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952900

RESUMO

A recently described ion charge coupled device detector IonCCD (Sinha and Wadsworth, Rev. Sci. Instrum. 76(2), 2005; Hadjar, J. Am. Soc. Mass Spectrom. 22(4), 612-624, 2011) is implemented in a miniature mass spectrometer of sector-field instrument type and Mattauch-Herzog (MH)-geometry (Rev. Sci. Instrum. 62(11), 2618-2620, 1991; Burgoyne, Hieftje and Hites J. Am. Soc. Mass Spectrom. 8(4), 307-318, 1997; Nishiguchi, Eur. J. Mass Spectrom. 14(1), 7-15, 2008) for simultaneous ion detection. In this article, we present first experimental evidence for the signature of energy loss the detected ion experiences in the detector material. The two energy loss processes involved at keV ion kinetic energies are electronic and nuclear stopping. Nuclear stopping is related to surface modification and thus damage of the IonCCD detector material. By application of the surface characterization techniques atomic force microscopy (AFM) and X-ray photoelectrons spectroscopy (XPS), we could show that the detector performance remains unaffected by ion impact for the parameter range observed in this study. Secondary electron emission from the (detector) surface is a feature typically related to electronic stopping. We show experimentally that the properties of the MH-mass spectrometer used in the experiments, in combination with the IonCCD, are ideally suited for observation of these stopping related secondary electrons, which manifest in reproducible artifacts in the mass spectra. The magnitude of the artifacts is found to increase linearly as a function of detected ion velocity. The experimental findings are in agreement with detailed modeling of the ion trajectories in the mass spectrometer. By comparison of experiment and simulation, we show that a detector bias retarding the ions or an increase of the B-field of the IonCCD can efficiently suppress the artifact, which is necessary for quantitative mass spectrometry.

16.
Adv Sci Lett ; 4(2): 512-515, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21603120

RESUMO

Discrete nanodiamond particles of 500 nm and 6 nm average size were seeded onto silicon substrates and plasma treated using chemical vapor deposition to create silicon-vacancy color centers. The resulting narrow-band room temperature photoluminescence is intense, and readily observed even for weakly agglomerated sub-10 nm size diamond. This is in contrast to the well-studied nitrogen-vacancy center in diamond which has luminescence properties that are strongly dependant on particle size, with low probability for incorporation of centers in sub-10 nm crystals. We suggest the silicon-vacancy center to be a viable alternative to nitrogen-vacancy defects for use as a biomarker in the clinically-relevant sub-10 nm size regime, for which nitrogen defect-related luminescent activity and stability is reportedly poor.

17.
Materials (Basel) ; 4(5): 857-867, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21603588

RESUMO

With incredible hardness and excellent wear-resistance, nanocrystalline diamond (NCD) coatings are gaining interest in the biomedical community as articulating surfaces of structural implant devices. The focus of this study was to deposit multilayered diamond coatings of alternating NCD and microcrystalline diamond (MCD) layers on Ti-6Al-4V alloy surfaces using microwave plasma chemical vapor deposition (MPCVD) and validate the multilayer coating's effect on toughness and adhesion. Multilayer samples were designed with varying NCD to MCD thickness ratios and layer numbers. The surface morphology and structural characteristics of the coatings were studied with X-ray diffraction (XRD), Raman spectroscopy, and atomic force microscopy (AFM). Coating adhesion was assessed by Rockwell indentation and progressive load scratch adhesion tests. Multilayered coatings shown to exhibit the greatest adhesion, comparable to single-layered NCD coatings, were the multilayer samples having the lowest average grain sizes and the highest titanium carbide to diamond ratios.

18.
PLoS One ; 6(2): e16813, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346817

RESUMO

The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.


Assuntos
Materiais Biomiméticos/farmacologia , Osso e Ossos/citologia , Colágeno Tipo I/química , Durapatita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química , Poliésteres/química , Adsorção , Animais , Materiais Biomiméticos/química , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/química , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Resistência à Tração , Alicerces Teciduais/química
19.
J Mater Sci Mater Med ; 22(2): 307-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21221739

RESUMO

While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O(2) in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O(2) feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O(2) is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 µm-thick nanostructured carbon films grown with O(2) remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation.


Assuntos
Carbono/química , Cromo/química , Cobalto/química , Ortopedia/métodos , Ligas , Catálise , Ligas de Cromo/química , Compostos de Cromo/química , Difusão , Grafite/química , Microscopia Eletrônica de Varredura/métodos , Oxigênio/química , Pressão , Próteses e Implantes , Difração de Raios X
20.
J Nanosci Nanotechnol ; 9(8): 4839-45, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19928159

RESUMO

Fibrous nanocomposite scaffolds were electrospun from dispersions of hydroxyapatite nanoparticles (nanoHA) in polycaprolactone (PCL) with varying nanoHA contents (from 0% to 50% by weight). Such scaffolds were produced to mimic the nano-features of the extracellular matrix (ECM) for natural bone tissue regeneration. NanoHA was found to be well dispersed in the PCL fibers up to the addition of 30 wt%, whereas beads and agglomeration of HA particles was observed above this nanoHA concentration. The structural and morphological characterizations were evaluated by scanning electron microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD). The average fiber diameter decreased with increased nanoHA concentration. The nanomechanical properties of the as-spun fibrous scaffolds as well as pressure-consolidated (pelletized) composites were evaluated by nanoindentation. Elastic modulus increased with increasing HA content, but was especially pronounced for 40-50% HA content where the indenter tip is more likely to probe agglomerated HA particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA