Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(5): 559-569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768432

RESUMO

Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.


Assuntos
Planeta Terra , Origem da Vida , Raios Ultravioleta , Adenina/química , Prebióticos/análise , Água/química
2.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629792

RESUMO

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Assuntos
Peptídeos , Peptídeos/química , Alanina/química , Estereoisomerismo , Células Artificiais/química , Leucina/química , Origem da Vida , Dipeptídeos/química
3.
PNAS Nexus ; 3(3): pgae084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505692

RESUMO

The origin of life likely occurred within environments that concentrated cellular precursors and enabled their co-assembly into cells. Soda lakes (those dominated by Na+ ions and carbonate species) can concentrate precursors of RNA and membranes, such as phosphate, cyanide, and fatty acids. Subsequent assembly of RNA and membranes into cells is a long-standing problem because RNA function requires divalent cations, e.g. Mg2+, but Mg2+ disrupts fatty acid membranes. The low solubility of Mg-containing carbonates limits soda lakes to moderate Mg2+ concentrations (∼1 mM), so we investigated whether both RNAs and membranes function within these lakes. We collected water from Last Chance Lake and Goodenough Lake in Canada. Because we sampled after seasonal evaporation, the lake water contained ∼1 M Na+ and ∼1 mM Mg2+ near pH 10. In the laboratory, nonenzymatic, RNA-templated polymerization of 2-aminoimidazole-activated ribonucleotides occurred at comparable rates in lake water and standard laboratory conditions (50 mM MgCl2, pH 8). Additionally, we found that a ligase ribozyme that uses oligonucleotide substrates activated with 2-aminoimidazole was active in lake water after adjusting pH from ∼10 to 9. We also observed that decanoic acid and decanol assembled into vesicles in a dilute solution that resembled lake water after seasonal rains, and that those vesicles retained encapsulated solutes despite salt-induced flocculation when the external solution was replaced with dry-season lake water. By identifying compatible conditions for nonenzymatic and ribozyme-catalyzed RNA assembly, and for encapsulation by membranes, our results suggest that soda lakes could have enabled cellular life to emerge on Earth, and perhaps elsewhere.

4.
ACS Earth Space Chem ; 8(2): 221-229, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379837

RESUMO

Cyanide and its derivatives play important roles in prebiotic chemistry through a variety of possible mechanisms. In particular, cyanide has been shown to allow for the synthesis of ribonucleotides and amino acids. Although dissolved hydrogen cyanide can be lost as a gas or undergo hydrolysis reactions, cyanide can also potentially be stored and stockpiled as ferrocyanide (Fe(CN)6-4), which is more stable. Furthermore, ferrocyanide aids in some prebiotic synthetic reactions. Here, we investigate the formation rates and yields of ferrocyanide as a function of various environmental parameters, such as the pH, temperature, and concentration. We find that ferrocyanide formation rates and yields are optimal at slightly alkaline conditions (pH 8-9) and moderate temperatures (≈20-30 °C). Given the wide range of possible lake environments likely available on early Earth, our results help to constrain the environmental conditions that would favor cyanide- and ferrocyanide-based prebiotic chemistries. We construct lake box models and find that ferrocyanide may be able to form and reach significant concentrations for prebiotic chemistry on the time scale of years under favorable conditions.

5.
ACS Earth Space Chem ; 7(7): 1433-1445, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37492631

RESUMO

The hygroscopic and supercooling properties of perchlorates make them potentially important for sustaining liquid water on Mars. To understand the possibility for supercooled liquids and glasses on Mars and other cold bodies, we have characterized the supercooling and vitrification features using differential scanning calorimetry for Na, Ca, and Mg perchlorate brines in a temperature range relevant to Mars. Results show that the glass transition temperature (Tg) depends on the salt composition, concentration, and cooling or warming rate. The difference in Tg may be significant even in a single composition, producing glass transitions with over 40 K difference. A new model was developed to describe these Tg dependencies, with the warmest Tg values found for high concentrations and fast cooling rates. These results emphasize the importance of considering Tg as a range rather than a discrete temperature. For all perchlorates measured, the degree of supercooling was extensive at high concentrations, exceeding 100 K from the liquidus. With a highly reduced glass temperature (Tg/liquidus temperature) and low critical rate of temperature change to avoid crystallization, concentrated perchlorate brines are strong glass formers when compared to other glass-forming materials. The consideration of cooling rates in the context of cellular cryopreservation suggests that cooling and warming rates may be an important astrobiological factors in a diverse set of planetary environments. These findings provide additional constraints on the possibility of liquid water on Mars in terms of concentration, different latitudes, seasons, and times of day.

6.
ACS Earth Space Chem ; 7(1): 11-27, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36704178

RESUMO

The first cells were plausibly bounded by membranes assembled from fatty acids with at least 8 carbons. Although the presence of fatty acids on the early Earth is widely assumed within the astrobiology community, there is no consensus regarding their origin and abundance. In this Review, we highlight three possible sources of fatty acids: (1) delivery by carbonaceous meteorites, (2) synthesis on metals delivered by impactors, and (3) electrochemical synthesis by spark discharges. We also discuss fatty acid synthesis by UV or particle irradiation, gas-phase ion-molecule reactions, and aqueous redox reactions. We compare estimates for the total mass of fatty acids supplied to Earth by each source during the Hadean eon after an extremely massive asteroid impact that would have reset Earth's fatty acid inventory. We find that synthesis on iron-rich surfaces derived from the massive impactor in contact with an impact-generated reducing atmosphere could have contributed ∼102 times more total mass of fatty acids than subsequent delivery by either carbonaceous meteorites or electrochemical synthesis. Additionally, we estimate that a single carbonaceous meteorite would not deliver a high enough concentration of fatty acids (∼15 mM for decanoic acid) into an existing body of water on the Earth's surface to spontaneously form membranes unless the fatty acids were further concentrated by another mechanism, such as subsequent evaporation of the water. Our estimates rely heavily on various assumptions, leading to significant uncertainties; nevertheless, these estimates provide rough order-of-magnitude comparisons of various sources of fatty acids on the early Earth. We also suggest specific experiments to improve future estimates. Our calculations support the view that fatty acids would have been available on the early Earth. Further investigation is needed to assess the mechanisms by which fatty acids could have been concentrated sufficiently to assemble into membranes during the origin of life.

7.
Langmuir ; 38(49): 15106-15112, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36445982

RESUMO

Fatty acid vesicles may have played a role in the origin of life as a major structural component of protocells, with the potential for encapsulation of genetic materials. Vesicles that grew and divided more rapidly than other vesicles could have had a selective advantage. Fatty acid vesicles grow by incorporating additional fatty acids from micelles, and certain prebiotic molecules (e.g., sugars, nucleobases, and amino acids) can bind to fatty acid vesicles and stabilize them. Here, we investigated whether the presence of a variety of biomolecules affects the overall growth of vesicles composed of decanoic acid, a prebiotically plausible fatty acid, upon micelle addition. We tested 31 molecules, including 15 dipeptides, 7 amino acids, 6 nucleobases or nucleosides, and 3 sugars. We find that the initial radius and final radius of vesicles are largely unaffected by the presence of the additional compounds. However, three dipeptides enhanced the initial rates of growth compared to control vesicles with no small molecules added; another three dipeptides decreased the initial rates of growth. We conclude that vesicles can indeed grow in the presence of a wide range of molecules likely to have been involved in the origin of life. These results imply that vesicles would have been able to grow in complex and heterogeneous chemical environments. We find that the molecules that enhance the initial growth rate tend to have hydrophobic groups (e.g., leucine), which may interact with the lipid membrane to affect growth rate; furthermore, the molecules that cause the largest decrease in initial growth rate are dipeptides containing a serine residue, which contains a hydroxyl group that could potentially hydrogen-bond with the fatty acid carboxylate groups.


Assuntos
Ácidos Graxos , Ácidos Nucleicos , Ácidos Graxos/química , Aminoácidos/química , Açúcares , Dipeptídeos , Micelas
8.
Langmuir ; 38(44): 13407-13413, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36278967

RESUMO

Replication of RNA genomes within membrane vesicles may have been a critical step in the development of protocells on the early Earth. Cold temperatures near 0 °C improve the stability of RNA and allow efficient copying, while some climate models suggest a cold early Earth, so the first protocells may have arisen in cold-temperature environments. However, at cold temperatures, saturated fatty acids, which would have been available on the early Earth, form gel-phase membranes that are rigid and restrict mobility within the bilayer. Two primary roles of protocell membranes are to encapsulate solutes and to grow by incorporating additional fatty acids from the environment. We test here whether fatty acid membranes in the gel phase accomplish these roles. We find that gel-phase membranes of 10-carbon amphiphiles near 0 °C encapsulate aqueous dye molecules as efficiently as fluid-phase membranes do, but the contents are released if the aqueous solution is frozen at -20 °C. Gel-phase membranes do not grow measurably by micelle addition, but growth resumes when membranes are warmed above the gel-liquid transition temperature. We find that longer, 12-carbon amphiphiles do not retain encapsulated contents near 0 °C. Together, our results suggest that protocells could have developed within environments that experience temporary cooling below the membrane melting temperature, and that membranes composed of relatively short-chain fatty acids would encapsulate solutes more efficiently as temperatures approached 0 °C.


Assuntos
Temperatura Baixa , Micelas , Temperatura , Prebióticos , Ácidos Graxos , RNA , Carbono
9.
Proc Natl Acad Sci U S A ; 119(37): e2205618119, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067299

RESUMO

The Great Oxidation Event (GOE), arguably the most important event to occur on Earth since the origin of life, marks the time when an oxygen-rich atmosphere first appeared. However, it is not known whether the change was abrupt and permanent or fitful and drawn out over tens or hundreds of millions of years. Here, we developed a one-dimensional time-dependent photochemical model to resolve time-dependent behavior of the chemically unstable transitional atmosphere as it responded to changes in biogenic forcing. When forced with step-wise changes in biogenic fluxes, transitions between anoxic and oxic atmospheres take between only 102 and 105 y. Results also suggest that O2 between [Formula: see text] and [Formula: see text] mixing ratio is unstable to plausible atmospheric perturbations. For example, when atmospheres with these O2 concentrations experience fractional variations in the surface CH4 flux comparable to those caused by modern Milankovich cycling, oxygen fluctuates between anoxic ([Formula: see text]) and oxic ([Formula: see text]) mixing ratios. Overall, our simulations are consistent with possible geologic evidence of unstable atmospheric O2, after initial oxygenation, which could occasionally collapse from changes in biospheric or volcanic fluxes. Additionally, modeling favors mid-Proterozoic O2 exceeding [Formula: see text] to [Formula: see text] mixing ratio; otherwise, O2 would periodically fall below [Formula: see text] mixing ratio, which would be inconsistent with post-GOE absence of sulfur isotope mass-independent fractionation.

10.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
11.
Langmuir ; 38(3): 1304-1310, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35026114

RESUMO

The first cell membranes were likely composed of single-chain amphiphiles such as fatty acids. An open question is whether fatty acid membranes could have functioned within evaporative lakes on the early Earth, which have been hypothesized to concentrate prebiotic reactants. Evaporation also concentrates monovalent salts, which in turn cause fatty acid membrane vesicles to flocculate; significant loss of encapsulated contents during flocculation would have impeded early cell evolution. Here, we tested whether fatty acid vesicles retain encapsulated contents after flocculation and after drying. We found that vesicles composed of 2:1 decanoic acid:decanol encapsulate calcein dye throughout a process of flocculation in saturated salt solution and subsequent disaggregation of vesicles by dilution of the salt. However, 30 minutes of complete dehydration disrupted encapsulation by fatty acid vesicles. In contrast, phospholipid vesicles maintained encapsulation. Our results reveal a selective pressure for protocells to incorporate phospholipids: while fatty acid membranes can retain encapsulated contents during periods of dilute and saturating salt, phospholipids are necessary for encapsulation during dry periods. Our results are consistent with the hypothesis that evaporative lakes were productive sites for prebiotic chemistry and the origin of cells.


Assuntos
Células Artificiais , Fosfolipídeos , Desidratação , Ácidos Graxos , Floculação , Humanos
12.
Geobiology ; 19(4): 342-363, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764615

RESUMO

Abundant geologic evidence shows that atmospheric oxygen levels were negligible until the Great Oxidation Event (GOE) at 2.4-2.1 Ga. The burial of organic matter is balanced by the release of oxygen, and if the release rate exceeds efficient oxygen sinks, atmospheric oxygen can accumulate until limited by oxidative weathering. The organic burial rate relative to the total carbon burial rate can be inferred from the carbon isotope record in sedimentary carbonates and organic matter, which provides a proxy for the oxygen source flux through time. Because there are no large secular trends in the carbon isotope record over time, it is commonly assumed that the oxygen source flux changed only modestly. Therefore, declines in oxygen sinks have been used to explain the GOE. However, the average isotopic value of carbon fluxes into the atmosphere-ocean system can evolve due to changing proportions of weathering and outgassing inputs. If so, large secular changes in organic burial would be possible despite unchanging carbon isotope values in sedimentary rocks. Here, we present an inverse analysis using a self-consistent carbon cycle model to determine the maximum change in organic burial since ~4 Ga allowed by the carbon isotope record and other geological proxies. We find that fractional organic burial may have increased by 2-5 times since the Archean. This happens because O2 -dependent continental weathering of 13 C-depleted organics changes carbon isotope inputs to the atmosphere-ocean system. This increase in relative organic burial is consistent with an anoxic-to-oxic atmospheric transition around 2.4 Ga without declining oxygen sinks, although these likely contributed. Moreover, our inverse analysis suggests that the Archean absolute organic burial flux was comparable to modern, implying high organic burial efficiency and ruling out very low Archean primary productivity.


Assuntos
Sedimentos Geológicos , Oxigênio , Atmosfera , Ciclo do Carbono , Isótopos de Carbono/análise
13.
Nat Commun ; 11(1): 6153, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262334

RESUMO

In the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult.

14.
Nat Commun ; 11(1): 2774, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487988

RESUMO

Aerobic lifeforms, including humans, thrive because of abundant atmospheric O2, but for much of Earth history O2 levels were low. Even after evidence for oxygenic photosynthesis appeared, the atmosphere remained anoxic for hundreds of millions of years until the ~2.4 Ga Great Oxidation Event. The delay of atmospheric oxygenation and its timing remain poorly understood. Two recent studies reveal that the mantle gradually oxidized from the Archean onwards, leading to speculation that such oxidation enabled atmospheric oxygenation. But whether this mechanism works has not been quantitatively examined. Here, we show that these data imply that reducing Archean volcanic gases could have prevented atmospheric O2 from accumulating until ~2.5 Ga with ≥95% probability. For two decades, mantle oxidation has been dismissed as a key driver of the evolution of O2 and aerobic life. Our findings warrant a reconsideration for Earth and Earth-like exoplanets.

15.
Sci Adv ; 6(9): eaax1420, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32133393

RESUMO

The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.

16.
Proc Natl Acad Sci U S A ; 117(2): 883-888, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31888981

RESUMO

Phosphate is central to the origin of life because it is a key component of nucleotides in genetic molecules, phospholipid cell membranes, and energy transfer molecules such as adenosine triphosphate. To incorporate phosphate into biomolecules, prebiotic experiments commonly use molar phosphate concentrations to overcome phosphate's poor reactivity with organics in water. However, phosphate is generally limited to micromolar levels in the environment because it precipitates with calcium as low-solubility apatite minerals. This disparity between laboratory conditions and environmental constraints is an enigma known as "the phosphate problem." Here we show that carbonate-rich lakes are a marked exception to phosphate-poor natural waters. In principle, modern carbonate-rich lakes could accumulate up to ∼0.1 molal phosphate under steady-state conditions of evaporation and stream inflow because calcium is sequestered into carbonate minerals. This prevents the loss of dissolved phosphate to apatite precipitation. Even higher phosphate concentrations (>1 molal) can form during evaporation in the absence of inflows. On the prebiotic Earth, carbonate-rich lakes were likely abundant and phosphate-rich relative to the present day because of the lack of microbial phosphate sinks and enhanced chemical weathering of phosphate minerals under relatively CO2-rich atmospheres. Furthermore, the prevailing CO2 conditions would have buffered phosphate-rich brines to moderate pH (pH 6.5 to 9). The accumulation of phosphate and other prebiotic reagents at concentration and pH levels relevant to experimental prebiotic syntheses of key biomolecules is a compelling reason to consider carbonate-rich lakes as plausible settings for the origin of life.


Assuntos
Carbonatos/química , Lagos/química , Origem da Vida , Fosfatos/química , Apatitas , Cálcio , Dióxido de Carbono , Membrana Celular , Concentração de Íons de Hidrogênio , Minerais , Modelos Biológicos , Rios , Solubilidade
17.
Astrobiology ; 19(5): 655-668, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30950631

RESUMO

Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H2 in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H2-consuming metabolisms would evolve on Mars, the persistence of CO and H2 in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H2. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 108 molecules/(cm2·s) for CO and 1.9 × 108 molecules/(cm2·s1) for H2. These convert to a maximum metabolizing biomass of ≲1027 cells or ≤2 × 1011 kg, equivalent to ≤10-4-10-5 of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from Curiosity. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O2 and H2-O2 may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.


Assuntos
Atmosfera/química , Biomassa , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/microbiologia , Marte , Atmosfera/análise , Monóxido de Carbono/análise , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/química , Hidrogênio/análise , Hidrogênio/química , Hidrogênio/metabolismo , Modelos Químicos , Oxirredução , Processos Fotoquímicos
18.
Rapid Commun Mass Spectrom ; 33(14): 1169-1178, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30989736

RESUMO

RATIONALE: The boron (B) isotopic composition in marine carbonates provides important insights into paleoclimate reconstruction and biomineralization. However, precise and accurate measurements of B isotopes using plasma-based mass spectrometry is difficult due to the volatile nature of B, which typically requires complex and more specialized sample introduction systems. Existing analytical protocols have mostly been based on Thermo Scientific Neptune Plus multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) instruments, whereas methods based on Nu Plasma mass spectrometers are scarce. METHODS: We have developed a simplified analytical protocol using Nu Plasma II MC-ICPMS with standard glass sample introduction systems. Boron extraction and purification were conducted using a two-stage column chemistry with cation-exchange and Amberlite IRA 743 B-specific resin. A sample drying step was avoided, which allows for direct isotopic analysis after column chemistry. A wet plasma mode with a standard glass cyclonic spray chamber and a glass nebulizer was used instead of a more specialized perfluoroalkoxy (PFA) sample introduction system. Low residual B signals were achieved with a relatively short period of wash-out with 0.5 N HNO3 . RESULTS: The external precision is better than 0.30‰ (2SD) calculated from the long-term bracketing standard, NIST SRM 951a. The overall robustness of the method was demonstrated by measurements of the international carbonate standard JCp-1 (δ11 B = +24.49 ± 0.36‰, 2SD) and seawater (δ11 B = +39.98 ± 0.35‰), which are consistent with reported values. CONCLUSIONS: Our method provides an alternative approach for B isotope analysis using a routine wet plasma MC-ICPMS setup that can facilitate geochemical and environmental application of B isotopes.

19.
Astrobiology ; 18(6): 619-629, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741918

RESUMO

The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets-Biosignatures-Remote observation-Spectral imaging-Bayesian analysis. Astrobiology 18, 619-626.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Vida , Oxigênio/análise
20.
Proc Natl Acad Sci U S A ; 115(16): 4105-4110, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610313

RESUMO

The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA