Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(3): 500-510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273123

RESUMO

The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.


Assuntos
Artrópodes , Características de História de Vida , Animais , Temperatura , Aclimatação , Fenótipo
2.
Curr Biol ; 33(7): 1351-1357.e5, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36882057

RESUMO

The yellow fever mosquito, Aedes aegypti, mates in flight as part of ephemeral aggregations termed swarms. Swarms contain many more males than females, and males are thought to be subject to intense sexual selection.1,2 However, which male traits are involved in mating success and the genetic basis of these traits remains unclear. We used an experimental evolution approach to measure genome-wide responses of Ae. aegypti evolved in the presence and absence of sexual selection. These data revealed for the first time how sexual selection shapes the genome of this important species. We found that populations evolved under sexual selection retained greater genetic similarity to the ancestral population and a higher effective population size than populations evolving without sexual selection. When we compared evolutionary regimes, we found that genes associated with chemosensation responded rapidly to the elimination of sexual selection. Knockdown of one high-confidence candidate gene identified in our analysis significantly decreased male insemination success, further suggesting that genes related to male sensory perception are under sexual selection. Several mosquito control technologies involve the release of males from captive populations into the wild. For these interventions to work, a released male must compete against wild males to successfully inseminate a female. Our results suggest that maintaining the intensity of sexual selection in captive populations used in mass-releases is important for sustaining both male competitive ability and overall genetic similarity to field populations.


Assuntos
Aedes , Comportamento Sexual Animal , Animais , Feminino , Masculino , Seleção Sexual , Aedes/fisiologia , Reprodução , Inseminação
3.
PLoS Negl Trop Dis ; 16(3): e0009525, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294445

RESUMO

Changes in land-use and the associated shifts in environmental conditions can have large effects on the transmission and emergence of mosquito-borne disease. Mosquito-borne disease are particularly sensitive to these changes because mosquito growth, reproduction, survival and susceptibility to infection are all thermally sensitive traits, and land use change dramatically alters local microclimate. Predicting disease transmission under environmental change is increasingly critical for targeting mosquito-borne disease control and for identifying hotspots of disease emergence. Mechanistic models offer a powerful tool for improving these predictions. However, these approaches are limited by the quality and scale of temperature data and the thermal response curves that underlie predictions. Here, we used fine-scale temperature monitoring and a combination of empirical, laboratory and temperature-dependent estimates to estimate the vectorial capacity of Aedes albopictus mosquitoes across a tropical forest-oil palm plantation conversion gradient in Malaysian Borneo. We found that fine-scale differences in temperature between logged forest and oil palm plantation sites were not sufficient to produce differences in temperature-dependent demographic trait estimates using published thermal performance curves. However, when measured under field conditions a key parameter, adult abundance, differed significantly between land-use types, resulting in estimates of vectorial capacity that were 1.5 times higher in plantations than in forests. The prediction that oil palm plantations would support mosquito populations with higher vectorial capacity was robust to uncertainties in our adult survival estimates. These results provide a mechanistic basis for understanding the effects of forest conversion to agriculture on mosquito-borne disease risk, and a framework for interpreting emergent relationships between land-use and disease transmission. As the burden of Ae. albopictus-vectored diseases, such as dengue virus, increases globally and rising demand for palm oil products drives continued expansion of plantations, these findings have important implications for conservation, land management and public health policy at the global scale.


Assuntos
Aedes , Dengue , Animais , Bornéu , Florestas , Mosquitos Vetores
4.
Insects ; 13(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35206728

RESUMO

Cyclopoid copepods have been applied successfully to limit populations of highly invasive Aedes albopictus mosquitoes that can transmit diseases of public health importance. However, there is concern that changes in certain mosquito traits, induced by exposure to copepod predation, might increase the risk of disease transmission. In this study, third instar Ae. albopictus larvae (focal individuals) were exposed to Megacyclops viridis predator cues associated with both the consumption of newly hatched mosquito larvae and attacks on focal individuals. The number of newly hatched larvae surrounding each focal larva was held constant to control for density effects on size, and the focal individual's day of pupation and wing length were recorded for each replicate. Exposing late instar Ae. albopictus to predation decreased their chances of surviving to adulthood, and three focal larvae that died in the predator treatment showed signs of melanisation, indicative of wounding. Among surviving focal Ae. albopictus, no significant difference in either pupation day or wing length was observed due to copepod predation. The absence of significant sublethal impacts from M. viridis copepod predation on surviving later stage larvae in this analysis supports the use of M. viridis as a biocontrol agent against Ae. albopictus.

5.
Commun Biol ; 5(1): 66, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046515

RESUMO

Mathematical models that incorporate the temperature dependence of lab-measured life history traits are increasingly being used to predict how climatic warming will affect ectotherms, including disease vectors and other arthropods. These temperature-trait relationships are typically measured under laboratory conditions that ignore how conspecific competition in depleting resource environments-a commonly occurring scenario in nature-regulates natural populations. Here, we used laboratory experiments on the mosquito Aedes aegypti, combined with a stage-structured population model, to investigate this issue. We find that intensified larval competition in ecologically-realistic depleting resource environments can significantly diminish the vector's maximal population-level fitness across the entire temperature range, cause a ~6 °C decrease in the optimal temperature for fitness, and contract its thermal niche width by ~10 °C. Our results provide evidence for the importance of considering intra-specific competition under depleting resources when predicting how arthropod populations will respond to climatic warming.


Assuntos
Aedes/genética , Aptidão Genética , Temperatura , Aedes/crescimento & desenvolvimento , Animais , Larva/genética , Larva/crescimento & desenvolvimento , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento
6.
PLoS Negl Trop Dis ; 15(7): e0009540, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34214096

RESUMO

BACKGROUND: The mosquito Aedes aegypti is a medically important, globally distributed vector of the viruses that cause dengue, yellow fever, chikungunya, and Zika. Although reproduction and mate choice are key components of vector population dynamics and control, our understanding of the mechanisms of sexual selection in mosquitoes remains poor. In "good genes" models of sexual selection, females use male cues as an indicator of both mate and offspring genetic quality. Recent studies in Ae. aegypti provide evidence that male wingbeats may signal aspects of offspring quality and performance during mate selection in a process known as harmonic convergence. However, the extent to which harmonic convergence may signal overall inherent quality of mates and their offspring remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To examine this, we measured the relationship between acoustic signaling and a broad panel of parent and offspring fitness traits in two generations of field-derived Ae. aegypti originating from dengue-endemic field sites in Thailand. Our data show that in this population of mosquitoes, harmonic convergence does not signal male fertility, female fecundity, or male flight performance traits, which despite displaying robust variability in both parents and their offspring were only weakly heritable. CONCLUSIONS/SIGNIFICANCE: Together, our findings suggest that vector reproductive control programs should treat harmonic convergence as an indicator of some, but not all aspects of inherent quality, and that sexual selection likely affects Ae. aegypti in a trait-, population-, and environment-dependent manner.


Assuntos
Aedes/fisiologia , Mosquitos Vetores/fisiologia , Aedes/genética , Animais , Feminino , Masculino , Controle de Mosquitos , Dinâmica Populacional , Reprodução , Comportamento Sexual Animal , Tailândia
7.
Commun Biol ; 4(1): 723, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117363

RESUMO

Harmonic convergence is a potential cue, female mosquitoes use to choose male mates. However, very little is known about the benefits this choice confers to offspring performance. Using Aedes aegypti (an important vector of human disease), we investigated whether offspring of converging parental pairs showed differences in immune competence compared to offspring derived from non-converging parental pairs. Here we show that harmonic convergence, along with several other interacting factors (sex, age, reproductive, and physiological status), significantly shaped offspring immune responses (melanization and response to a bacterial challenge). Harmonic convergence had a stronger effect on the immune response of male offspring than on female offspring. Further, female offspring from converging parental pairs disseminated dengue virus more quickly than offspring derived from non-converging parental pairs. Our results provide insight into a wide range of selective pressures shaping mosquito immune function and could have important implications for disease transmission and control.


Assuntos
Aedes/fisiologia , Acústica , Aedes/imunologia , Aedes/virologia , Fatores Etários , Animais , Vírus da Dengue/fisiologia , Feminino , Masculino , Reprodução/fisiologia , Fatores Sexuais , Comportamento Sexual Animal/fisiologia
8.
Proc Biol Sci ; 288(1949): 20203217, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906411

RESUMO

Laboratory-derived temperature dependencies of life-history traits are increasingly being used to make mechanistic predictions for how climatic warming will affect vector-borne disease dynamics, partially by affecting abundance dynamics of the vector population. These temperature-trait relationships are typically estimated from juvenile populations reared on optimal resource supply, even though natural populations of vectors are expected to experience variation in resource supply, including intermittent resource limitation. Using laboratory experiments on the mosquito Aedes aegypti, a principal arbovirus vector, combined with stage-structured population modelling, we show that low-resource supply in the juvenile life stages significantly depresses the vector's maximal population growth rate across the entire temperature range (22-32°C) and causes it to peak at a lower temperature than at high-resource supply. This effect is primarily driven by an increase in juvenile mortality and development time, combined with a decrease in adult size with temperature at low-resource supply. Our study suggests that most projections of temperature-dependent vector abundance and disease transmission are likely to be biased because they are based on traits measured under optimal resource supply. Our results provide compelling evidence for future studies to consider resource supply when predicting the effects of climate and habitat change on vector-borne disease transmission, disease vectors and other arthropods.


Assuntos
Aedes , Mosquitos Vetores , Animais , Vetores de Doenças , Aptidão Genética , Temperatura
9.
PLoS One ; 16(2): e0246178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529245

RESUMO

During range expansion, invasive species can experience new thermal regimes. Differences between the thermal performance of local and invasive species can alter species interactions, including predator-prey interactions. The Asian tiger mosquito, Aedes albopictus, is a known vector of several viral diseases of public health importance. It has successfully invaded many regions across the globe and currently threatens to invade regions of the UK where conditions would support seasonal activity. We assessed the functional response and predation efficiency (percentage of prey consumed) of the cyclopoid copepods Macrocyclops albidus and Megacyclops viridis from South East England, UK against newly-hatched French Ae. albopictus larvae across a relevant temperature range (15, 20, and 25°C). Predator-absent controls were included in all experiments to account for background prey mortality. We found that both M. albidus and M. viridis display type II functional response curves, and that both would therefore be suitable biocontrol agents in the event of an Ae. albopictus invasion in the UK. No significant effect of temperature on the predation interaction was detected by either type of analysis. However, the predation efficiency analysis did show differences due to predator species. The results suggest that M. viridis would be a superior predator against invasive Ae. albopictus larvae due to the larger size of this copepod species, relative to M. albidus. Our work highlights the importance of size relationships in predicting interactions between invading prey and local predators.


Assuntos
Aedes , Tamanho Corporal , Copépodes/anatomia & histologia , Espécies Introduzidas/estatística & dados numéricos , Larva , Comportamento Predatório , Temperatura , Animais , Controle Biológico de Vetores
10.
Trends Parasitol ; 37(4): 330-339, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422425

RESUMO

The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as polygynous. Male mating success is highly variable in swarms and evidence suggests that it is likely determined by both scramble competition between males and female choice. Incorporating this new understanding will improve both implementation and long-term stability of reproductive control tools.


Assuntos
Preferência de Acasalamento Animal , Controle de Mosquitos , Animais , Preferência de Acasalamento Animal/fisiologia , Reprodução
11.
Front Ecol Evol ; 82020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32775339

RESUMO

Many important endemic and emerging diseases are transmitted by vectors that are biting arthropods. The functional traits of vectors can affect pathogen transmission rates directly and also through their effect on vector population dynamics. Increasing empirical evidence shows that vector traits vary significantly across individuals, populations, and environmental conditions, and at time scales relevant to disease transmission dynamics. Here, we review empirical evidence for variation in vector traits and how this trait variation is currently incorporated into mathematical models of vector-borne disease transmission. We argue that mechanistically incorporating trait variation into these models, by explicitly capturing its effects on vector fitness and abundance, can improve the reliability of their predictions in a changing world. We provide a conceptual framework for incorporating trait variation into vector-borne disease transmission models, and highlight key empirical and theoretical challenges. This framework provides a means to conceptualize how traits can be incorporated in vector borne disease systems, and identifies key areas in which trait variation can be explored. Determining when and to what extent it is important to incorporate trait variation into vector borne disease models remains an important, outstanding question.

12.
Curr Opin Insect Sci ; 40: 11-17, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32505906

RESUMO

Sound plays an important role in mosquito sensory ecology. Acoustic perception and acoustically driven behaviours therefore represent potentially effective control targets. Previous scientific efforts around acoustic-based control and surveillance have not been systematic and ambiguity around the exact role of acoustic communication in conspecific interactions remains. Here, we briefly review recent advances in mosquito auditory physiology and behavioural ecology as well as ongoing activities to incorporate sound into control and surveillance tools. We highlight areas where increased collaboration between physiologists, molecular biologists, behavioural ecologists and control experts is needed to capitalize on this progress and realize the potential of sound-based technologies and strategies.


Assuntos
Percepção Auditiva , Culicidae/fisiologia , Controle de Mosquitos/métodos , Acústica , Animais
13.
Parasit Vectors ; 12(1): 357, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324262

RESUMO

BACKGROUND: Evaluating and improving mating success and competitive ability of laboratory-reared transgenic mosquito strains will enhance the effectiveness of proposed disease-control strategies that involve deployment of transgenic strains. Two components of the mosquito rearing process, larval diet quantity and aquatic environment - which are linked to physiological and behavioural differences in adults - are both relatively easy to manipulate. In mosquitoes, as for many other arthropod species, the quality of the juvenile habitat is strongly associated with adult fitness characteristics, such as longevity and fecundity. However, the influence of larval conditioning on mating performance is poorly understood. Here, we investigated the combined effects of larval diet amount and environmental water source on adult male mating success in a genetically modified strain of Aedes aegypti mosquitoes in competition with wild-type conspecifics. Importantly, this research was conducted in a field setting using low generation laboratory and wild-type lines. RESULTS: By controlling larval diet (high and low) and rearing water source (field-collected and laboratory water), we generated four treatment lines of a genetically modified strain of Ae. aegypti tagged with fluorescent sperm. Laboratory reared mosquitoes were then competed against a low generation wild-type colony in a series of laboratory and semi-field mating experiments. While neither food quantity nor larval aquatic environment were found to affect male mating fitness, the transgenic lines consistently outperformed wild-types in laboratory competition assays, an advantage that was not conferred to semi-field tests. CONCLUSIONS: Using a model transgenic system, our results indicate that differences in the experimental conditions of laboratory- and field-based measures of mating success can lead to variation in the perceived performance ability of modified strains if they are only tested in certain environments. While there are many potential sources of variation between laboratory and field lines, laboratory adaptation - which may occur over relatively few generations in this species - may directly impact mating ability depending on the context in which it is measured. We suggest that colony-hybridization with field material can potentially be used to mitigate these effects in a field setting. Release programs utilising mass-produced modified laboratory strains should incorporate comparative assessments of quality in candidate lines.


Assuntos
Aedes/fisiologia , Animais Geneticamente Modificados , Comportamento Sexual Animal , Aedes/genética , Animais , Feminino , Larva/fisiologia , Longevidade , Masculino , Reprodução , Espermatozoides/fisiologia
14.
Proc Biol Sci ; 286(1904): 20190591, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185872

RESUMO

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae. aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


Assuntos
Aedes/fisiologia , Comportamento Sexual Animal , Aedes/anatomia & histologia , Comunicação Animal , Animais , Evolução Biológica , Tamanho Corporal , Feminino , Masculino , Preferência de Acasalamento Animal , Reprodução
15.
Sci Rep ; 9(1): 2145, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765779

RESUMO

Despite the importance of mosquito mating biology to reproductive control strategies, a mechanistic understanding of individual mating interactions is currently lacking. Using synchronised high-speed video and audio recordings, we quantified behavioural and acoustic features of mating attempts between tethered female and free-flying male Aedes aegypti. In most couplings, males were actively displaced by female kicks in the early phases of the interaction, while flight cessation prior to adoption of the pre-copulatory mating pose also inhibited copulation. Successful males were kicked at a reduced rate and sustained paired contact-flight for longer than those that were rejected. We identified two distinct phases of acoustic interaction. Rapid frequency modulation of flight tones was observed in all interactions up to acceptance of the male. Harmonic convergence (wingbeat frequency matching) was detected more often in successful attempts, coinciding with the transition to stabilised paired flight and subsequent genital contact. Our findings provide a clearer understanding of the relationship between acoustic interactions and mating performance in mosquitoes, offering insights which may be used to target improvements in laboratory reared lines.


Assuntos
Aedes/fisiologia , Comunicação Animal , Voo Animal/fisiologia , Reprodução , Comportamento Sexual Animal/fisiologia , Asas de Animais/fisiologia , Acústica , Animais , Feminino , Masculino
16.
J Med Entomol ; 55(1): 29-35, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29029298

RESUMO

Control of Aedes aegypti (L.) (Diptera: Culicidae) populations is vital for reducing the transmission of several pervasive human diseases. The success of new vector control technologies will be influenced by the fitness of laboratory-reared transgenic males. However, there has been relatively little published data on how rearing practices influence male fitness in Aedes mosquitoes. In the laboratory, the effect of larval food availability on adult male fitness was tested, using a range of different fitness measures. Larval food availability was demonstrated to be positively correlated with adult body size. Larger males survived longer and exhibited greater swarming activity. As a consequence, larger males may have more mating opportunities in the wild. However, we also found that within a swarm larger males did not have an increased likelihood of copulating with a female. The outcome of the mating competition experiments depended on the methodology used to mark the males. These results show that fitness assessment can vary depending on the measure analyzed, and the methodology used to determine it. Continued investigation into these fitness measures and methodologies, and critically, their utility for predicting male performance in the field, will increase the efficiency of vector control programs.


Assuntos
Aedes/fisiologia , Dieta , Comportamento Sexual Animal , Aedes/crescimento & desenvolvimento , Animais , Copulação , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Masculino , Reprodução
17.
Curr Opin Insect Sci ; 20: 28-33, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28602233

RESUMO

When infection alters host behaviour such that the pathogen benefits, the behaviour is termed a manipulation. There are several examples of this fascinating phenomenon in many different systems. Vector-borne diseases are no exception. In some instances, as the term implies, pathogens directly interfere with host processes to control behaviour. However, host response to infection and host physiology are likely to play important roles in these phenotypes. We highlight the importance of considering host response and physiology from recent work on altered host-seeking in malaria parasite-infected mosquitoes and argue that this general approach will provide useful insights across vector-borne disease systems.


Assuntos
Insetos Vetores/parasitologia , Insetos/parasitologia , Animais , Interações Hospedeiro-Parasita , Comportamento de Busca por Hospedeiro , Insetos Vetores/imunologia , Insetos Vetores/fisiologia , Insetos/imunologia , Insetos/fisiologia , Malária , Plasmodium/patogenicidade
18.
Parasit Vectors ; 9(1): 622, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906074

RESUMO

BACKGROUND: Several new mosquito control strategies will involve the release of laboratory reared males which will be required to compete with wild males for mates. Currently, the determinants of male mating success remain unclear. The presence of convergence between male and female harmonic flight tone frequencies during a mating attempt have been found to increase male mating success in the yellow fever mosquito, Aedes aegypti. Size has also been implicated as a factor in male mating success. Here, we investigated the relationships among body size, harmonic convergence signalling, and mating success. We predicted that harmonic convergence would be an important determinant of mating success and that large individuals would be more likely to converge. METHODS: We used diet to manipulate male and female body size and then measured acoustic interactions during mating attempts between pairs of different body sizes. Additionally, we used playback experiments to measure the direct effect of size on signalling performance. RESULTS: In live pair interactions, harmonic convergence was found to be a significant predictor of copula formation. However, we also found interactions between harmonic convergence behaviour and body size. The probability that a given male successfully formed a copula was a consequence of his size, the size of the female encountered, and whether or not they converged. While convergence appears to be predictive of mating success regardless of size, the positive effect of convergence was modulated by size combinations. In playbacks, adult body size did not affect the probability of harmonic convergence responses. CONCLUSIONS: Both body size and harmonic convergence signalling were found to be determinants of male mating success. Our results suggest that in addition to measuring convergence ability of mass release lines that the size distribution of released males may need to be adjusted to complement the size distribution of females. We also found that diet amount alone cannot be used to increase male mating success or convergence probability. A clearer understanding of convergence behaviours, their relationship to mating success, and factors influencing convergence ability would provide the groundwork for improving the mating performance of laboratory reared lines.


Assuntos
Aedes/anatomia & histologia , Aedes/fisiologia , Tamanho Corporal , Comportamento Sexual Animal , Som , Animais , Feminino , Masculino , Fatores Sexuais
19.
Parasit Vectors ; 9: 113, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26927687

RESUMO

BACKGROUND: Malaria-infected mosquitoes have been reported to be more likely to take a blood meal when parasites are infectious than when non-infectious. This change in feeding behavior increases the likelihood of malaria transmission, and has been considered an example of parasite manipulation of host behavior. However, immune challenge with heat-killed Escherichia coli induces the same behavior, suggesting that altered feeding behavior may be driven by adaptive responses of hosts to cope with an immune response, rather than by parasite-specific factors. Here we tested the alternative hypothesis that down-regulated feeding behavior prior to infectiousness is a mosquito adaptation that increases fitness during infection. METHODS: We measured the impact of immune challenge and blood feeding on the fitness of individual mosquitoes. After an initial blood meal, Anopheles stephensi Liston mosquitoes were experimentally challenged with heat-killed E. coli at a dose known to mimic the same temporal changes in mosquito feeding behavior as active malaria infection. We then tracked daily egg production and survivorship of females maintained on blood-feeding regimes that either mimicked down-regulated feeding behaviors observed during early malaria infection, or were fed on a four-day feeding cycle typically associated with uninfected mosquitoes. RESULTS: Restricting access to blood meals enhanced mosquito survival but lowered lifetime reproduction. Immune-challenge did not impact either fitness component. Combining fecundity and survival to estimate the population-scale intrinsic rate of increase (r), we found that, contrary to the mosquito adaptation hypothesis, mosquito fitness decreased if blood feeding was delayed following an immune challenge. CONCLUSIONS: Our data provide no support for the idea that malaria-induced suppression of blood feeding is an adaptation by mosquitoes to reduce the impact of immune challenge. Alternatively, the behavioral alterations may be neither host nor parasite adaptations, but rather a consequence of constraints imposed on feeding by activation of the mosquito immune response, i.e. non-adaptive illness-induced anorexia. Future work incorporating field conditions and different immune challenges could further clarify the effect of altered feeding on mosquito and parasite fitness.


Assuntos
Anopheles/fisiologia , Escherichia coli/imunologia , Animais , Anopheles/imunologia , Comportamento Alimentar , Reprodução , Análise de Sobrevida
20.
Sci Rep ; 5: 11947, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26153094

RESUMO

Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.


Assuntos
Culicidae/fisiologia , Insulina/metabolismo , Malária/parasitologia , Animais , Culicidae/imunologia , Comportamento Alimentar , Feminino , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Parasita , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Malária/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Morfolinos/metabolismo , Fenótipo , Plasmodium falciparum/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA