Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 849279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574033

RESUMO

Gliomas are the most frequent solid tumors in children. Among these, high-grade gliomas are less common in children than in adults, though they are similar in their aggressive clinical behavior. In adults, glioblastoma is the most lethal tumor of the central nervous system. Insulin-like growth factor 1 receptor (IGF1R) plays an important role in cancer biology, and its nuclear localization has been described as an adverse prognostic factor in different tumors. Previously, we have demonstrated that, in pediatric gliomas, IGF1R nuclear localization is significantly associated with high-grade tumors, worst clinical outcome, and increased risk of death. Herein we explore the role of IGF1R intracellular localization by comparing two glioblastoma cell lines that differ only in their IGF1R capacity to translocate to the nucleus. In vitro, IGF1R nuclear localization enhances glioblastoma cell motility and metabolism without affecting their proliferation. In vivo, IGF1R has the capacity to translocate to the nucleus and allows not only a higher proliferation rate and the earlier development of tumors but also renders the cells sensitive to OSI906 therapy. With this work, we provide evidence supporting the implications of the presence of IGF1R in the nucleus of glioma cells and a potential therapeutic opportunity for patients harboring gliomas with IGF1R nuclear localization.


Assuntos
Glioblastoma , Glioma , Adulto , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Criança , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Receptores de Somatomedina/metabolismo
2.
Biochimie ; 186: 43-50, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865903

RESUMO

Metal ions and metal complexes are important components of nucleic acid biochemistry, participating both in regulation of gene expression and as therapeutic agents. Three new transition metal complexes of copper(II), zinc(II) and oxidovanadium(IV) with a ligand derived from o-vanillin and thiophene were previously synthesized and their antitumor properties were studied in our laboratory. To elucidate some molecular mechanisms tending to explain the cytotoxic effects observed over tumor cells, we investigated the interaction of these complexes with DNA by gel electrophoresis, UV-Vis spectroscopy, docking studies and molecular dynamics simulations. Our spectroscopy and computational results have shown that all of them were able to bind to DNA, Cu(II) complex is located in the minor groove while Zn(II) and oxidovanadium(IV) complexes act as major groove binding molecules. Interestingly, only the Cu(II) complex caused double-strand DNA nicks, consistent with its higher cytotoxic activities previously observed in tumor cell lines. We propose that the DNA-complex interaction destabilize the molecule either disrupting the phosphodiester bonds or impairing DNA replication, giving those complexes strong antitumor potential.


Assuntos
Cobre/química , DNA/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vanadatos/química , Zinco/química , Bases de Schiff
3.
PLoS One ; 12(12): e0189031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211789

RESUMO

In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.


Assuntos
Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Microscopia de Força Atômica/métodos , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real
4.
Biochem J ; 474(18): 3093-3107, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28729426

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first and rate-limiting step in the de novo glycerolipid synthesis. The GPAT2 isoform differs from the other isoforms because its expression is restricted to male germ cells and cancer cells. It has been recently reported that GPAT2 expression in mouse testis fluctuates during sexual maturation and that it is regulated by epigenetic mechanisms in combination with vitamin A derivatives. Despite progress made in this field, information about GPAT2 role in the developing male germ cells remains unclear. The aim of the present study was to confirm the hypothesis that GPAT2 is required for the normal physiology of testes and male germ cell maturation. The gene was silenced in vivo by inoculating lentiviral particles carrying the sequence of a short-hairpin RNA targeting Gpat2 mRNA into mouse testis. Histological and gene expression analysis showed impaired spermatogenesis and arrest at the pachytene stage. Defects in reproductive fitness were also observed, and the analysis of apoptosis-related gene expression demonstrated the activation of apoptosis in Gpat2-silenced germ cells. These findings indicate that GPAT2 protein is necessary for the normal development of male gonocytes, and that its absence triggers apoptotic mechanisms, thereby decreasing the number of dividing germ cells.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese , Espermatozoides/enzimologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glicerol-3-Fosfato O-Aciltransferase/antagonistas & inibidores , Glicerol-3-Fosfato O-Aciltransferase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Estágio Paquíteno , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Túbulos Seminíferos/citologia , Túbulos Seminíferos/crescimento & desenvolvimento , Espermatozoides/citologia , Espermatozoides/metabolismo
5.
Biochem J ; 471(2): 211-20, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268560

RESUMO

Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on-off expression pattern responds predominantly to epigenetic modifications.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Prófase Meiótica I/fisiologia , Estágio Paquíteno/fisiologia , Regiões Promotoras Genéticas/fisiologia , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Animais , Glicerol-3-Fosfato O-Aciltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatócitos/citologia
6.
PLoS One ; 9(6): e100896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967918

RESUMO

The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Testículo/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Neoplasias da Mama/genética , Carcinogênese/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica , Simulação por Computador , Decitabina , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Glicerol-3-Fosfato O-Aciltransferase/deficiência , Humanos , Masculino , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
PLoS One ; 7(8): e42986, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905194

RESUMO

BACKGROUND: De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT). In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid. METHODS AND RESULTS: Incubation of GPAT2-transfected CHO-K1 cells with [1-(14)C]arachidonate for 3 h increased incorporation of [(14)C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2's role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein. CONCLUSIONS: These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células Germinativas/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/biossíntese , Espermatozoides/metabolismo , Acil Coenzima A/metabolismo , Animais , Células CHO , Catálise , Cricetinae , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Humanos , Masculino , Camundongos , Isoformas de Proteínas , Ratos , Especificidade por Substrato , Testículo/metabolismo , Fatores de Tempo , Distribuição Tecidual
8.
Can J Physiol Pharmacol ; 84(7): 765-75, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16998540

RESUMO

Complexes of vanadyl(IV) with 4 monosaccharides and 5 disaccharides were tested in 2 osteoblast-like cell lines (MC3T3E1 and UMR106). Many complexes caused stimulation of UMR106 proliferation (120% basal) in the range of 2.5 to 25 micromol/L. In the nontransformed osteoblasts, some vanadyl-saccharide complexes stimulated the mitogenesis (115% basal) in the same range of concentration. The glucose and sucrose complexes were the most efficient inhibitory agents (65% and 88% of inhibition vs. basal, respectively) for tumoral cells at 100 micromol/L. The galactose and turanose complexes exerted a similar effect in the nontransformed osteoblasts. On the other hand, all the complexes promoted the phosphorylation of the extracellular regulated kinases (ERKs). All together, these results indicate that the stimulation of ERKs is not the only factor that plays a role in the proliferative effects of vanadium derivatives since some compounds were inhibitory proliferating agents. Cell differentiation was evaluated by alkaline phosphatase specific activity and collagen synthesis in UMR106 cells. All the complexes inhibited alkaline phosphatase activity, with galactose complex as the most effective compound (IC50 = 43 micromol/L). The complex with the trehalose TreVO was the most effective agent to stimulate collagen synthesis (142% basal) and glucose consumption (132% basal). A cytosolic tyrosine protein kinase and the kinase-3 of glycogen synthase seem to be involved in the stimulation of glucose consumption by vanadium derivatives. In this series, only TreVO gathered the characteristics of a good insulin mimetic and osteogenic drug. In addition, this complex was a good promoting agent of nontransformed osteoblast proliferation, whereas it inhibited tumoral osteoblasts. GluVO, the complex with glucose, was also more toxic for tumoral than for nontransformed cells. These 2 vanadium derivatives are good potential antitumoral drugs. All the results suggest that the biological effects of vanadium compounds are a complex phenomenon influenced by the complexation, the dose, and the nature of the ligands and the cells.


Assuntos
Dissacarídeos/farmacologia , Monossacarídeos/farmacologia , Compostos Organometálicos/farmacologia , Osteoblastos/efeitos dos fármacos , Compostos de Vanádio/farmacologia , Células 3T3 , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Dissacarídeos/química , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Monossacarídeos/química , Compostos Organometálicos/química , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos , Estaurosporina/farmacologia , Compostos de Vanádio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA