Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240429, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628128

RESUMO

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.


Assuntos
Aedes , Culex , Wolbachia , Animais , Feminino , Masculino , Wolbachia/genética , Inteligência Artificial , Aedes/genética
2.
Insects ; 14(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37504636

RESUMO

The mass production of mosquitoes at an industrial scale requires efficient sex separation, which can be achieved through mechanical, genetic or artificial intelligence means. Compared with other methods, the genetic sexing approach offers the advantage of limiting costs and space by removing females at the larval stage. We recently developed a Genetic Sexing Strain (GSS) in Aedes albopictus based on the sex linkage of the rdlR allele, conferring resistance to dieldrin, to the male (M) locus. It has been previously reported that dieldrin ingested by larvae can be detected in adults and bioaccumulated in predators, raising the question of its use at a large scale. In this context, we performed several experiments aiming at optimizing dieldrin selection by decreasing both dieldrin concentration and exposure time while maintaining a stable percentage of contaminating females averaging 1%. We showed that the previously used dieldrin exposure induced an important toxicity as it killed 60% of resistant males at the larval stage. We lowered this toxicity by reducing the dose and/or the exposure time to recover nearly all resistant males. We then quantified the residues of dieldrin in resistant male adults and showed that dieldrin toxicity in larvae was positively correlated with dieldrin concentrations detected in adults. Interestingly, we showed that the use of reduced dieldrin exposure led to a dieldrin quantification in adult males that was below the quantity threshold of the Gas Chromatography-Mass Spectrometry detection method. Presented data show that dieldrin exposure can be adjusted to suppress toxicity in males while achieving efficient sexing and lowering the levels of dieldrin residues in adults to barely quantifiable levels.

3.
J Med Entomol ; 60(4): 828-832, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37134310

RESUMO

The production of mosquitoes for control programs or basic research is facilitated by the standardization of rearing conditions allowing the daily manipulation of thousands of individuals. It is crucial to develop mechanical or electronic systems for controlling the density of mosquitoes at each development stage with the aim of reducing costs, time, and human errors. We present herein an automatic mosquito counter using a recirculating water system allowing rapid and reliable counting of pupae without detectable increased mortality. Using Aedes albopictus pupae, we determined the density of pupae and the time of counting for which the device is most accurate, and evaluated the time saved using this device. Lastly, we discuss how this mosquito pupae counter can be useful in small-scale or mass-rearing contexts enabling a number of applications for research purposes as well as operational mosquito control programs.


Assuntos
Aedes , Humanos , Animais , Pupa , Controle de Mosquitos , Água , Mosquitos Vetores
4.
Pest Manag Sci ; 77(12): 5589-5598, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398490

RESUMO

BACKGROUND: Pyrethroid insecticides such as deltamethrin have been massively used against Aedes aegypti leading to the spread of resistance alleles worldwide. In an insecticide resistance management context, we evaluated the temporal dynamics of deltamethrin resistance using two distinct populations carrying resistant alleles at different frequencies. Three different scenarios were followed: a continuous selection, a full release of selection, or a repeated introgression with susceptible individuals. The responses of each population to these selection regimes were measured across five generations by bioassays and by monitoring the frequency of knockdown resistance (kdr) mutations and the transcription levels and copy number variations of key detoxification enzymes. RESULTS: Knockdown resistance mutations, overexpression and copy number variations of detoxification enzymes as a mechanism of metabolic resistance to deltamethrin was found and maintained under selection across generations. On comparison, the release of insecticide pressure for five generations did not affect resistance levels and resistance marker frequencies. However, introgressing susceptible alleles drastically reduced deltamethrin resistance in only three generations. CONCLUSION: The present study confirmed that strategies consisting to stop deltamethrin spraying are likely to fail when the frequencies of resistant alleles are too high and the fitness cost associated to resistance is low. In dead-end situations like in French Guiana where alternative insecticides are not available, alternative control strategies may provide a high benefit for vector control, particularly if they favor the introgression of susceptible alleles in natural populations. © 2021 Society of Chemical Industry.


Assuntos
Aedes , Arbovírus , Inseticidas , Piretrinas , Aedes/genética , Animais , Variações do Número de Cópias de DNA , Guiana Francesa , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Nova Caledônia , Nitrilas , Piretrinas/farmacologia
5.
Evol Appl ; 14(4): 1009-1022, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897817

RESUMO

By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.

6.
Evol Appl ; 13(2): 303-317, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993078

RESUMO

In addition to combating vector-borne diseases, studying the adaptation of mosquitoes to insecticides provides a remarkable example of evolution-in-action driving the selection of complex phenotypes. Actually, most resistant mosquito populations show multi-resistance phenotypes as a consequence of the variety of insecticides employed and of the complexity of selected resistance mechanisms. Such complexity makes the identification of alleles conferring resistance to specific insecticides challenging and prevents the development of molecular assays to track them in the field. Here we showed that combining simple genetic crosses with pool targeted DNA-seq can enhance the specificity of resistance allele's detection while maintaining experimental work and sequencing effort at reasonable levels. A multi-resistant population of the mosquito Aedes aegypti was exposed to three distinct insecticides (deltamethrin, bendiocarb and fenitrothion), and survivors to each insecticide were crossed with a susceptible strain to generate three distinct lines. F2 individuals from each line were then segregated based on their survival to two insecticide doses. Hundreds of genes covering all detoxifying enzymes and insecticide targets together with more than 7,000 intergenic regions equally spread over mosquito genome were sequenced from pools of F0 and F2 individuals unexposed or surviving insecticide. Differential coverage analysis identified 39 detoxification enzymes showing an increased gene copy number in association with resistance. Combining an allele frequency filtering approach with a Bayesian F ST-based genome scan identified multiple genomic regions showing strong selection signatures together with 50 nonsynonymous variations associated with resistance. This study provides a simple and cost-effective approach to improve the specificity of resistance allele's detection in multi-resistant populations while reducing false positives frequently arising when comparing populations showing divergent genetic backgrounds. The identification of novel DNA resistance markers opens new opportunities for improving the tracking of insecticide resistance in the field.

7.
PLoS Negl Trop Dis ; 13(12): e0007852, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830027

RESUMO

BACKGROUND: The yellow fever mosquito Aedes aegypti is the major vector of dengue, yellow fever, Zika, and Chikungunya viruses. Worldwide vector control is largely based on insecticide treatments but, unfortunately, vector control programs are facing operational challenges due to mosquitoes becoming resistant to commonly used insecticides. In Southeast Asia, resistance of Ae. aegypti to chemical insecticides has been documented in several countries but no data regarding insecticide resistance has been reported in Laos. To fill this gap, we assessed the insecticide resistance of 11 Ae. aegypti populations to larvicides and adulticides used in public health operations in the country. We also investigated the underlying molecular mechanisms associated with resistance, including target site mutations and detoxification enzymes putatively involved in metabolic resistance. METHODS AND RESULTS: Bioassays on adults and larvae collected in five provinces revealed various levels of resistance to organophosphates (malathion and temephos), organochlorine (DDT) and pyrethroids (permethrin and deltamethrin). Synergist bioassays showed a significant increased susceptibility of mosquitoes to insecticides after exposure to detoxification enzyme inhibitors. Biochemical assays confirmed these results by showing significant elevated activities of cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and carboxylesterases (CCE) in adults. Two kdr mutations, V1016G and F1534C, were detected by qPCR at low and high frequency, respectively, in all populations tested. A significant negative association between the two kdr mutations was detected. No significant association between kdr mutations frequency (for both 1534C and 1016G) and survival rate to DDT or permethrin (P > 0.05) was detected. Gene Copy Number Variations (CNV) were detected for particular detoxification enzymes. At the population level, the presence of CNV affecting the carboxylesterase CCEAE3A and the two cytochrome P450 CYP6BB2 and CYP6P12 were significantly correlated to insecticide resistance. CONCLUSIONS: These results suggest that both kdr mutations and metabolic resistance mechanisms are present in Laos but their impact on phenotypic resistance may differ in proportion at the population or individual level. Molecular analyses suggest that CNV affecting CCEAE3A previously associated with temephos resistance is also associated with malathion resistance while CNV affecting CYP6BB2 and CYP6P12 are associated with pyrethroid and possibly DDT resistance. The presence of high levels of insecticide resistance in the main arbovirus vector in Laos is worrying and may have important implications for dengue vector control in the country.


Assuntos
Aedes/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Aedes/genética , Animais , Bioensaio , Sinergismo Farmacológico , Feminino , Dosagem de Genes , Genes de Insetos , Hidrocarbonetos Clorados/farmacologia , Laos , Larva/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Mosquitos Vetores/genética , Mutação , Organofosfatos/farmacologia , Piretrinas/farmacologia
8.
Mol Biol Evol ; 34(4): 980-996, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122970

RESUMO

Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.


Assuntos
Teorema de Bayes , Drosophila/genética , Genética Populacional/métodos , Filogeografia/métodos , Animais , China , Simulação por Computador , Variação Genética/genética , Genótipo , Havaí , Espécies Introduzidas , Japão , Repetições de Microssatélites/genética , Modelos Genéticos , América do Norte
10.
PLoS One ; 11(1): e0147766, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26809119

RESUMO

The invasive pest Drosophila suzukii is characterized by a specific fresh-fruit targeting behavior and has quickly become a menace for the fruit economy of newly infested North American and European regions. D. suzukii carries a strain of the endosymbiotic bacterium Wolbachia, named wSuz, which has a low infection frequency and no reproductive manipulation capabilities in American populations of D. suzukii. To further understand the nature of wSuz biology and assess its utility as a tool for controlling this pest's populations, we investigated the prevalence of Wolbachia in 23 European D. suzukii populations, and compared our results with those available in American populations. Our data showed a highly variable infection frequency with a mean prevalence of 46%, which is significantly higher than the 17% found in American populations. Based on Multilocus Sequence Typing analysis, a single wSuz strain was diagnosed in all European populations of D. suzukii. In agreement with American data, we found no evidence of cytoplasmic incompatibility induced by wSuz. These findings raise two questions: a) why Wolbachia is maintained in field populations of D. suzukii and b) what are the selective forces responsible for the variation in prevalence within populations, particularly between European and American continents? Our results provide new insights into the D. suzukii-Wolbachia association and highlight regional variations that await further investigation and that should be taken into account for using Wolbachia-based pest management programs.


Assuntos
Drosophila/microbiologia , Wolbachia/fisiologia , Animais , Europa (Continente) , Tipagem de Sequências Multilocus , América do Norte , Wolbachia/classificação , Wolbachia/genética
11.
PLoS One ; 10(3): e0119288, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25768841

RESUMO

In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI). This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy). We have previously constructed the LR[wPip(Is)] line representing a good candidate for controlling field populations of the Culex quinquefasciatus mosquito in the islands of the south-western Indian Ocean. The main purpose of the present study was to fill the gap between laboratory experiments and field implementation, i.e. assessing mating competitiveness of these incompatible males under semi-field conditions. In a first set of experiments, we analyzed crossing relationships between LR[wPip(Is)] males and La Réunion field females collected as larvae in 19 distinct localities throughout the island. This investigation revealed total embryonic mortality, confirming the strong sterilizing capacity of LR[wPip(Is)] males. Subsequently, mating competitiveness of LR[wPip(Is)] males was assessed under semi-field conditions in the presence of field males and females from La Réunion. Confrontations were carried out in April and December using different ratios of LR[wPip(Is)] to field males. The results indicated that the LR[wPip(Is)] males successfully compete with field males in mating with field females, displaying even higher competitiveness than field males in April. Our results support the implementation of small-scale field tests in order to assess the feasibility of IIT against Cx. quinquefasciatus in the islands of southwestern Indian Ocean where this mosquito species is a proven competent vector for human pathogens.


Assuntos
Culex/fisiologia , Culicidae/fisiologia , Wolbachia/genética , Animais , Culex/microbiologia , Culicidae/microbiologia , Citoplasma/microbiologia , Citoplasma/fisiologia , Feminino , Oceano Índico , Masculino , Controle de Mosquitos/métodos , Controle da População/métodos , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA