Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202404088, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38622921

RESUMO

To develop new hybrid micelles with alkyl/polyaromatic core-shell structures, we synthesized umbrella-shaped amphiphiles bearing a bent anthracene dimer with a linear alkyl chain (i.e., octyl and hexadecyl groups). The amphiphiles quantitatively assemble into spherical micelles (~2-3 nm in core diameter), possessing an alkylated cavity surrounded by a polyaromatic framework, in water. The alkylation significantly enhances the stability of the micellar structures against dilution (up to 9 µM) and heat (up to >120 °C). The highly condensed hexadecyl core of the hybrid micelle, as indicated by solvatochromic guest probes, displays increased uptake ability toward large alkylated metallodyes. Interestingly, efficient uptake of aromatic macrocycles (i.e., [n]cycloparaphenylenes) by the present micelle provides pseudorotaxane-shaped host-guest composites with high emissivity (ΦF=up to 35 %). Internal multi-alkylation of an aromatic micelle can thus successfully enhance its assembly stability/guest uptake functions.

2.
Beilstein J Org Chem ; 20: 32-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230357

RESUMO

Efficient water-solubilization of nanocarbons is desirable for both their biological and material applications, but so far has mainly relied on covalent modifications or amphiphiles featuring ionic side-chains. Here, we report a facile 2-4-step synthesis of pyridinium-based, bent aromatic amphiphiles with modular nonionic side-chains (i.e., CH3 and CH2CH2(OCH2CH2)2-Y (Y = OCH3, OH, and imidazole)). The new amphiphiles quantitatively self-assemble into ≈2 nm-sized aromatic micelles in water independent of the side-chain. Importantly, efficient water-solubilization and nonionic surface modification of various nanocarbons (e.g., fullerene C60, carbon nanotubes, and graphene nanoplatelets) are achieved through noncovalent encircling with the bent amphiphiles. The resultant imidazole-modified nanocarbons display a pH-responsive surface charge, as evidenced by NMR and zeta-potential measurements. In addition, solubilization of a nitrogen-doped nanocarbon (i.e., graphitic carbon nitride) in the form of 10-30 nm-sized stacks is also demonstrated using the present amphiphiles.

3.
Angew Chem Int Ed Engl ; 62(31): e202306399, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277681

RESUMO

π-Conjugated aromatic polymers (πCAPs) are central components of functional materials yet suffer from insolubility without multiple covalent substituents on their backbones. We herein disclose a new strategy for the facile processing of unsubstituted heterocyclic πCAPs (i.e., poly(para-phenylene-2,6-benzobisoxazole) and poly(benzimidazobenzo-phenanthroline)), independent of the polymer length, via non-covalent encircling with aromatic micelles, composed of bent aromatic amphiphiles, in water. The UV/Visible studies reveal that the efficiencies of the present encircling method are ≈10 to 50-fold higher than those using conventional amphiphiles under the same conditions. The AFM and SEM analyses of the resultant aqueous polymer composites show that otherwise insoluble πCAPs form fine bundles (e.g., ≈1 nm in thickness) in the tubular aromatic micelles, through efficient π-stacking interactions. In the same way, pristine poly(para-phenylene) can be dissolved in water, displaying enhanced fluorescence (10-fold), relative to the polymer solid. Two types of unsubstituted πCAPs are likewise co-encircled in water, indicated by UV/Visible analysis. Importantly, aqueous processing of the encircled πCAPs into free-standing single- or multicomponent films with submicrometer thickness is demonstrated through a simple filtration-annealing protocol.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36631075

RESUMO

Micelles are useful and widely applied molecular assemblies, formed from amphiphilic molecules, in water. The majority of amphiphiles possess an alkyl chain as the hydrophobic part. Amphiphiles bearing hydrophilic and hydrophobic polymer chains generate so-called polymeric micelles in water. This review focuses on the recent progress of "aromatic micelles", formed from bent polyaromatic/aromatic amphiphiles, for the development of third-generation micelles. Thanks to multiple host-guest interactions, e.g., the hydrophobic effect and π-π/CH-π interactions, the present micelles display wide-ranging uptake abilities toward various hydrophobic compounds in water. In addition to such host functions, new stimuli-responsive aromatic micelles with pH, light, and redox switches, aromatic oligomer micelles, saccharide-coated aromatic micelles, and related cycloalkane-based micelles were recently developed by our group.


Assuntos
Micelas , Polímeros , Polímeros/química , Água , Interações Hidrofóbicas e Hidrofílicas
5.
Chem Sci ; 13(29): 8642-8648, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974766

RESUMO

Host-guest structures and properties have been widely studied using relatively small dyes (<1 nm) without bulky groups, due to their smooth incorporation, efficient host-guest interactions, and high analytical accessibility. In this report, on the other hand, three types of sterically demanding organic dyes trapped by a polyaromatic cage were investigated by spectroscopic analyses on the basis of supramolecular interactions. Coumarins with two bulky substituents are bound by the cage in aqueous solution. The resultant caged dyes show unusual emission enhancement, depending on the difference of a single heteroatom in their substituents. The color of perylene bisimides with two bulky substituents is remarkably changed from yellow to red upon caging. This peculiarity stems from the twist of the substituents in the cage, revealed by the combination of absorption and theoretical studies. Furthermore, tetrasubstituted, bulky porphyrins are caught by the cage in aqueous solution. The caged bulky dyes also display altered color and absorption properties, which remain intact even under acidic conditions. In contrast to typical covalent functionalization and previous host-guest studies toward small and non-bulky dyes, the unusual, non-covalent spectroscopic modulation of the large and bulky dyes can be accomplished for the first time by the present cage, featuring a prolate polyaromatic framework with four openings.

6.
J Org Chem ; 87(1): 419-428, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928613

RESUMO

Chiral pyrrolidine derivatives are important building blocks for natural product synthesis. Carbonyl olefin metathesis has recently emerged as a powerful tool for the construction of such building blocks from chiral amino acid derivatives. Here, we demonstrate that the supramolecular resorcinarene catalyst enables access to chiral 2,5-dihydropyrroles under Brønsted acid catalysis. Moreover, this catalytic system even tolerated Lewis-basic-protecting groups like mesylates that are not compatible with alternative catalysts. As expected for conversion inside a closed cavity, the product yield and selectivity depended on the size of the substrates.


Assuntos
Alcenos , Produtos Biológicos , Catálise , Pirróis
7.
J Am Chem Soc ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133165

RESUMO

We herein report a new set of supramolecular nanotools for the generation and modulation of singlet fission (SF) of noncovalent/covalent pentacene dimers. Two molecules of a pentacene monomer with bulky substituents are facilely encapsulated by a polyaromatic capsule, composed of naphthalene-based bent amphiphiles, in water. The encapsulated noncovalent dimer converts to otherwise undetectable triplet pairs and an individual triplet in high quantum yields (179% and 53%, respectively) even under high dilution conditions. Within the capsule, a covalently linked pentacene dimer with bulky groups generates two triplet pair intermediates in parallel, which are hardly distinguished in bulk solution, in excellent total quantum yield (196%). The yield of the individual triplet is enhanced by 1.6 times upon encapsulation. For both types of pentacene dimers, the SF features can be readily tuned by changing the polyaromatic panels of the capsule (i.e., anthracene and phenanthrene).

8.
Angew Chem Int Ed Engl ; 60(23): 12791-12795, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713537

RESUMO

To develop a new type of synthetic saccharide clusters with changeable fluorescent colors, we herein designed a multisaccharide-coated aromatic micelle. The new cluster forms in water through the quantitative assembly of bent polyaromatic amphiphiles bearing three mannose groups. The spherical assembly, with a 2 nm-sized polyaromatic core and ca. 18 saccharide pendants, is stable even under high dilution conditions (up to 0.02 mM). The emission intensity and color of the saccharide cluster can be altered from moderate blue (ΦF =19 %) to strong red, orange, and green (ΦF up to 67 %) upon encapsulation of hydrophobic fluorescent dyes in water. Moreover, the present fluorescent clusters, both with and without the dyes, display selective interactions with mannose-binding proteins in vitro.


Assuntos
Cor , Corantes Fluorescentes/química , Lectinas de Ligação a Manose/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular
9.
Chemistry ; 27(13): 4447-4453, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346916

RESUMO

The sizes of available self-assembled hydrogen-bond-based supramolecular capsules and cages are rather limited. The largest systems have volumes of approximately 1400-2300 Å3 . Herein, we report a large, hexameric cage based on intermolecular amide-amide dimerization. The unusual structure with openings, reminiscent of covalently linked cages, is held together by 24 hydrogen bonds. With a diameter of 2.3 nm and a cavity volume of ∼2800 Å3 , the assembly is larger than any previously known capsule/cage structure relying exclusively on hydrogen bonds. The self-assembly process in chlorinated, organic solvents was found to be strongly concentration dependent, with the monomeric form prevailing at low concentrations. Additionally, the formation of host-guest complexes with fullerenes (C60 and C70 ) was observed.

10.
Angew Chem Int Ed Engl ; 59(29): 11881-11885, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32291946

RESUMO

To gain insight into the host functions of a nanocavity encircled by both polyaromatic panels and heteroatoms, nitrogen-doped polyaromatic capsules were successfully synthesized from metal ions and pyridine-embedded, bent anthracene-based ligands. The new capsules display unique host-guest interactions in the isolated cavities, which are distinct from those of the undoped analogues. Besides the inclusion of Ag+ ions, the large absorption change of fullerene C60 and altered emission of a BODIPY dimer are observed upon encapsulation by the present hosts. Moreover, the N-doped capsule exhibits specific binding ability toward progesterone and methyltestosterone, known as a natural female and synthetic male hormone, respectively, in water.

11.
J Am Chem Soc ; 142(9): 4400-4410, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031794

RESUMO

The elucidation of the requirements for efficient catalysis within supramolecular host systems is an important prerequisite for developing novel supramolecular catalysts. The resorcinarene hexamer has recently been shown to be the first supramolecular catalyst to promote the tail-to-head terpene cyclization in a biomimetic fashion. We herein present the synthesis of a number of resorcinarene-based macrocycles composed of different ratios of resorcinol and pyrogallol units capable of self-assembly and compare the corresponding assemblies regarding their catalytic activity in the cyclization of monoterpenes. The assemblies were investigated in detail with respect to a number of properties including the encapsulation of substrate and ion pairs, the structural incorporation of water, and the response to externally added acid (HCl). The results obtained strongly indicate that water incorporated into the hydrogen-bond network of the self-assembled structure plays an integral role for catalysis, effectively acting as a proton shuttle to activate the encapsulated substrate. These findings are also supported by molecular dynamics simulations, providing further insight into the protonation pathway and the relative energies of the intermediates involved.

12.
Chem Sci ; 11(31): 8145-8150, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34123086

RESUMO

Introduction of atropisomeric axes into a bent bispyridine ligand leads to the quantitative formation of a complex mixture of atropisomeric M2L4 cages upon treatment with metal ions. Whereas the isomer ratio of the obtained cage mixture, consisting of up to 42 isomers, is insensitive to temperature and solvent, the quantitative convergence from the mixture to a single isomer is accomplished upon encapsulation of a large spherical guest, namely fullerene C60. The observed isomerization with other guests depends largely on their size and shape (e.g., <10 and 82% convergence with planar triphenylene and bowl-shaped corannulene guests, respectively). Besides the unusual guest-induced convergence, the present cage mixture displays the strongest guest emission (Φ F = 68%) among previously reported M n L m cages and capsules, upon encapsulation of a BODIPY dye in water.

13.
Acc Chem Res ; 52(8): 2392-2404, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31347840

RESUMO

This Account provides a comprehensive summary of our 1-decade-long investigations into bent anthracene dimers as versatile building blocks for supramolecular capsules. The investigations initiated in 2008 with the design of an anthracene dimer with a meta-phenylene spacer bearing two substituents on the convex side. Using the bent polyaromatic building block, we began to develop novel supramolecular capsules from two different synthetic approaches. One is a coordination approach, which was pursued by converting the building block into a bent ligand with two pyridine units at the terminal positions. The ligands quantitatively assemble into an M2L4-type capsule through coordination bonding with metal ions. The other is a π-stacking approach, which was followed by utilizing the block as a bent amphiphilic molecule with two trimethylammonium groups at the spacer. In water, the amphiphiles spontaneously assemble into a micelle-type capsule through the hydrophobic effect and π-stacking interactions. Simple modification of the building block allowed us to prepare a wide variety of coordination capsules as well as π-stacking capsules, bearing different hydrophilic side-chains, terminal substitutions, connecting units, polyaromatic panels, or spacer units. The coordination capsule possesses a rigid cavity, with a diameter of ∼1 nm, surrounded by multiple anthracene panels. The spherical polyaromatic cavity binds various synthetic molecules (e.g., paracyclophanes, corannulene, BODIPY, and fullerene C60) in aqueous solutions. With the aid of the polyaromatic shell, photochemically and thermally reactive radical initiators and oligosulfurs are greatly stabilized in the cavity. Biomolecules such as hydrophilic sucrose and oligo(lactic acid)s as well as hydrophobic androgenic hormones are bound by the capsule with high selectivity. In addition, long amphiphilic poly(ethylene oxide)s are threaded into the closed shell of the capsule(s) to generate unusual pseudorotaxane-shaped host-guest complexes in water. In contrast, the π-stacking capsule furnishes a flexible cavity, adaptable to the size and shape of guest molecules, encircled by multiple anthracene panels. In water, the capsule binds hydrophobic fluorescent dyes (e.g., Nile red and DCM) in the cavity. Simple grinding of the bent amphiphile with highly hydrophobic nanocarbons such as fullerenes, nanographenes, and carbon nanotubes (followed by sonication) as well as metal-complexes such as Cu(II)-phthalocyanines and Mn(III)-tetraphenylporphyrins leads to the efficient formation of water-soluble host-guest complexes upon encapsulation. Red emission from otherwise water-deactivated Eu(III)-complexes is largely enhanced in water through encapsulation. Moreover, the incorporation of pH- and photoswitches into the amphiphile affords stimuli-responsive π-stacking capsules, capable of releasing bound guests by the addition of acid and light irradiation, respectively, in water. The host functions of the coordination and π-stacking capsules are complementary to each other, which enables selection of the capsule-type depending on the envisioned target. We are convinced that continued investigation of the present supramolecular capsules featuring the bent anthracene dimer and its derivatives will further increase their value as advanced molecular tools for synthetic, analytical, material, biological, and/or medical applications.

14.
J Am Chem Soc ; 141(31): 12268-12273, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31287679

RESUMO

For the development of a redox-active supramolecular capsule with host function, we synthesized a bent heterocyclic amphiphile using phenothiazine panels capable of adopting three different states, i.e., neutral, radical, and oxygenated states. In water, the new amphiphiles spontaneously and quantitatively assemble into a heterocycle-based capsule with an average diameter of ∼2 nm, through the hydrophobic effect and π-stacking interactions. The product structure was confirmed by the combination of NMR, UV-visible, DLS, AFM, and molecular modeling studies. Electrochemical and chemical oxidation of the capsule generates relatively stable radical cation capsules at room temperature in a reversible fashion. The neutral capsule efficiently takes up large hydrophobic compounds (e.g., pigment blue 15 and fullerene C60) into the heterocyclic cavity through a grinding protocol and subsequent chemical oxidation of the products generates radical host-guest complexes. Moreover, chemical oxygenation of the host-guest complexes was shown to induce guest release in water via disassembly of the capsular structure through dioxygenation of the phenothiazine panels.

15.
Nat Prod Rep ; 36(12): 1619-1627, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31021352

RESUMO

Covering: literature up to 2018 Terpenes are a class of natural products characterized by remarkable structural diversity. Much of this diversity arises biosynthetically from a handful of linear precursors through the so-called tail-to-head terpene cyclization reaction. This reaction is one of the most complex observed in nature, and historically attempts to replicate it with non-enzymatic means have met with little success. In recent years, however, the development of manmade binding pockets that allow such reactions to take place has been reported. This Highlight provides an overview of this nascent field, and outlines the challenges that need to be overcome moving forward.


Assuntos
Produtos Biológicos/síntese química , Enzimas/química , Terpenos/química , Anticorpos/química , Anticorpos/metabolismo , Sítios de Ligação , Produtos Biológicos/química , Ciclização , Enzimas/metabolismo , Terpenos/síntese química
16.
Nat Commun ; 10(1): 1948, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019192

RESUMO

Molecular containers that provide both stimuli-responsive assembly/disassembly properties and wide-ranging host capabilities in aqueous medium still remain a current synthetic challenge. Herein we report polyaromatic nanocapsules assembled from V-shaped amphiphilic molecules bearing a photoresponsive ortho-dianthrylbenzene unit in water. Unlike previously reported supramolecular capsules and cages, the nanocapsules quickly and quantitatively disassemble into monomeric species by a non-invasive light stimulus through structural conversion from the open to the closed form of the amphiphiles. Regeneration of the nanocapsules is demonstrated by light irradiation or heating of the closed amphiphiles. With the aid of the wide-ranging host capability, the photo-induced release of various encapsulated guest molecules (e.g., Nile red, Cu(II)-phthalocyanine, and fullerene C60) can be achieved by using the present nanocapsule in water. This feature can furthermore be utilized to switch the fluorescence of encapsulated coumarin guests through their controlled release.

17.
Acc Chem Res ; 51(9): 2107-2114, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30153000

RESUMO

In this Account, we outline our investigation into the supramolecular resorcinarene capsule as a catalyst. Molecular capsules not only are of interest due to the similarities of their binding pockets with those of natural enzymes but also feature potential advantages for catalysis. Due to the restricted internal volume of the binding pockets, substrate selectivities are commonly observed. Substrates that are encapsulated more efficiently will be converted selectively in the presence of less suitable substrates. This size selectivity cannot be obtained in a regular solution experiment. In addition, because of the distinct chemical environment inside the capsule, different product selectivities may be observed. Furthermore, the encapsulation of reactive catalysts inside confined environments may improve catalyst compatibility for multicatalyst tandem reactions. Although the potential advantages of performing catalysis inside closed microenvironments are generally recognized, the number of known catalytically active supramolecular host systems is still very limited. There are several reasons, the most important of which is that it is very difficult to predict the catalytic potential of known supramolecular host systems. In several cases, even the encapsulation behavior of host systems is not completely understood or explored. Therefore, it is evident that further research is required to explore the potential of catalysis inside supramolecular capsules. Our initial research mainly focused on understanding the puzzling encapsulation behavior of the self-assembled resorcinarene capsule I and the closely related pyrogallolarene capsule II. After the elucidation of the decisive differences between these two systems, we explored the catalytic potential of capsule I. A variety of different reactions were successfully performed inside its cavity. The most important examples highlighted in this Account are iminium catalysis, the tail-to-head terpene cyclization, and the carbonyl-olefin metathesis. In the case of proline-mediated iminium catalysis, we were able to demonstrate that the enantioselectivity for the product formation was increased when the reaction was performed inside the cavity of capsule I. This is remarkable since the capsule is formed from achiral building blocks and, therefore, does not add chiral information to the reaction mixture. The tail-to-head terpene cyclization is the most complex reaction performed so far inside capsule I. The cyclic monoterpenes eucalyptol and α-terpinene were formed in useful yields. Interestingly, these products have not yet been synthetically accessible in solution directly from acyclic terpene precursors. Furthermore, we demonstrated that the cocatalytic system of capsule I and HCl is suitable for carbonyl-olefin metathesis. HCl was shown to be an inefficient catalyst for this reaction in solution experiments. This demonstrates that the different chemical environment inside the supramolecular container can lead to altered product selectivity. In general, we hope to demonstrate in this Account that research on catalysis inside supramolecular capsules, although still in its infancy, is starting to produce the first synthetically relevant results.

18.
Chem Commun (Camb) ; 54(26): 3195-3206, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29504004

RESUMO

Ring- and tube-shaped molecules like crown ethers and cyclodextrins play a fundamental role in supramolecular chemistry since their initial discovery. To date, numerous intriguing properties and reactivities have been reported based on their unique inner microenvironments. While inner spaces encircled by aliphatic and/or small aromatic frameworks have been heavily investigated, tubular structures that feature polyaromatic frameworks remained largely unexplored until 2010, despite their undisputable potential. Polyaromatic rings provide appealing photophysical and electrochemical properties and thus allow for the construction of new functional cylindrical nanospaces. This feature article describes the recent progress in the synthesis and application of short tubular molecules bearing multiple (≥3) polyaromatic rings (e.g., anthracene, pyrene, chrysene, and HBC). The polyaromatic tubes reported herein display characteristic properties such as strong fluorescent emission, a selective molecular binding ability, efficient host-guest energy transfer and open-closed structural transformations.

19.
Angew Chem Int Ed Engl ; 57(44): 14589-14592, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29266825

RESUMO

Carbonyl-olefin metathesis represents a powerful yet underdeveloped method for the formation of carbon-carbon bonds. So far, no Brønsted acid based method for the catalytic carbonyl-olefin metathesis has been described. Herein, a cocatalytic system based on a simple Brønsted acid (HCl) and a self-assembled supramolecular host is presented. The developed system compares well with the current benchmark catalyst for carbonyl-olefin metathesis in terms of substrate scope and yield of isolated product. Control experiments provide strong evidence that the reaction proceeds inside the cavity of the supramolecular host. A mechanistic probe indicates that a stepwise reaction mechanism is likely.

20.
J Am Chem Soc ; 139(33): 11482-11492, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28590723

RESUMO

The tail-to-head terpene cyclization is arguably one of the most complex reactions found in nature. The hydrogen-bond-based resorcinarene capsule represents the first man-made enzyme-like catalyst that is capable of catalyzing this reaction. Based on noncovalent interactions between the capsule and the substrate, the product selectivity can be tuned by using different leaving groups. A detailed mechanistic investigation was performed to elucidate the reaction mechanism. For the cyclization of geranyl acetate, it was found that the cleavage of the leaving group is the rate-determining step. Furthermore, the studies revealed that trace amounts of acid are required as cocatalyst. A series of control experiments demonstrate that a synergistic interplay between the supramolecular capsule and the acid traces is required for catalytic activity.


Assuntos
Acetatos/química , Calixarenos/química , Fenilalanina/análogos & derivados , Terpenos/química , Monoterpenos Acíclicos , Catálise , Ciclização , Ligação de Hidrogênio , Modelos Moleculares , Fenilalanina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA