RESUMO
P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade , Transtornos de Ansiedade , Comportamento Animal/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Depressão/genética , Depressão/metabolismo , Medo , Feminino , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo , Lobo Temporal/metabolismoRESUMO
Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects.
Assuntos
Antimaníacos/farmacologia , Benzimidazóis/farmacologia , Transtorno Bipolar/tratamento farmacológico , Tetrazóis/farmacologia , Anfetamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antimaníacos/sangue , Antioxidantes/farmacologia , Compostos de Bifenilo , Transtorno Bipolar/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Compostos de Lítio/sangue , Compostos de Lítio/farmacologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Distribuição AleatóriaRESUMO
Oxidative imbalance, alterations in brain-derived neurotrophic factor (BDNF), and mitochondrial dysfunction are implicated in bipolar disorder (BD) pathophysiology and comorbidities, for example, cardiovascular conditions. Carvedilol (CVD), a nonselective beta-blocker widely used for the treatment of hypertension, presents antioxidant and mitochondrial stabilizing properties. Thus, we hypothesized that CVD would prevent and/or reverse mania-like behavioral and neurochemical alterations induced by lisdexamfetamine dimesylate (LDX). To do this, male Wistar rats were submitted to two different protocols, namely, prevention and reversal. In the prevention treatment the rats received daily oral administration (mg/kg) of CVD (2.5, 5 or 7.5), saline, valproate (VAL200), or the combination of CVD5 + VAL100 for 7 days. From the 8th to 14th day LDX was added. In the reversal protocol LDX was administered for 7 days with the drugs being added from the 8th to 14th day of treatment. Two hours after the last administration the behavioral (open field and social interaction) and neurochemical (reduced glutathione, lipid peroxidation, and BDNF) determinations were performed. The results showed that CVD prevented and reversed the behavioral and neurochemical alterations induced by LDX. The administration of CVD5 + VAL100 potentiated the effect of VAL200 alone. Taken together these results demonstrate a possible antimanic effect of CVD in this preclinical model.
Assuntos
Antimaníacos/administração & dosagem , Transtorno Bipolar/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carbazóis/administração & dosagem , Propanolaminas/administração & dosagem , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Antimaníacos/uso terapêutico , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carbazóis/uso terapêutico , Carvedilol , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Dimesilato de Lisdexanfetamina , Masculino , Malondialdeído/metabolismo , Atividade Motora/efeitos dos fármacos , Propanolaminas/uso terapêutico , Ratos , Ratos Wistar , Isolamento Social , Ácido Valproico/administração & dosagem , Ácido Valproico/uso terapêuticoRESUMO
Polymorphisms in the human dopamine transporter (DAT) are associated with bipolar endophenotype. Based on this, the acute inhibition of DAT using GBR12909 causes behavioral alterations that are prevented by valproate (VAL), being related to a mania-like model. Herein our first aim was to analyze behavioral and brain oxidative alterations during a 24 h period post-GBR12909 to better characterize this model. Our second aim was to determine the preventive effects of lithium (Li) or VAL 2 h post-GBR12909. For this, adult male mice received GBR12909 or saline being evaluated at 2, 4, 8, 12 or 24 h post-administration. Hyperlocomotion, levels of reduced glutathione (GSH) and lipid peroxidation in brain areas were assessed at all these time-points. GBR12909 caused hyperlocomotion at 2 and 24 h. Rearing behavior increased only at 2 h. GSH levels decreased in the hippocampus and striatum at the time points of 2, 4, 8 and 12 h. Increased lipid peroxidation was detected at the time-points of 2 and 12 h in all brain areas studied. At the time-point of 2 h post-GBR12909 Li prevented the hyperlocomotion and rearing alterations, while VAL prevented only rearing alterations. Both drugs prevented pro-oxidative changes. In conclusion, we observed that the main behavioral and oxidative alterations took place at the time-period of 2 h post-GBR12909, what points to this time-period as the best for the assessment of alterations in this model. Furthermore, the present study expands the predictive validity of the model by the determination of the preventive effects of Li.