Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 8(10): 4371-4379, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854053

RESUMO

Metal halide perovskites (MHPs) are disruptive materials for a vast class of optoelectronic devices. The presence of electronic trap states has been a tough challenge in terms of characterization and thus mitigation. Many attempts based on electronic spectroscopies have been tested, but due to the mixed electronic-ionic nature of MHP conductivity, many experimental results retain a large ambiguity in resolving electronic and ionic charge contributions. Here we adapt a method, previously used in highly resistive inorganic semiconductors, called photoinduced current transient spectroscopy (PICTS) on lead bromide 2D-like ((PEA)2PbBr4) and standard "3D" (MAPbBr3) MHP single crystals. We present two conceptually different outcomes of the PICTS measurements, distinguishing the different electronic and ionic contributions to the photocurrents based on the different ion drift of the two materials. Our experiments unveil deep level trap states on the 2D, "ion-frozen" (PEA)2PbBr4 and set new boundaries for the applicability of PICTS on 3D MHPs.

2.
Langmuir ; 39(35): 12430-12451, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37608587

RESUMO

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.

3.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851625

RESUMO

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

4.
Adv Sci (Weinh) ; 7(24): 2002586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344134

RESUMO

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices. Here, an ultraflexible, lightweight, and highly conformable passively operated thin film perovskite X-ray detector with a sensitivity as high as 9.3 ± 0.5 µC Gy-1 cm-2 at 0 V and a remarkably low limit of detection of 0.58 ± 0.05 µGy s-1 is presented. Various electron and hole transporting layers accessing their individual impact on the detector performance are evaluated. Moreover, it is shown that this ultrathin form-factor allows for fabrication of devices detecting X-rays equivalently from front and back side.

5.
Nanotechnology ; 27(18): 185703, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27004458

RESUMO

The morphology of different surfaces has been investigated by atomic force microscopy and quantitatively analyzed in this paper. Two different tools have been employed to this scope: the analysis of the height-height correlation function and the determination of the mean grain size, which have been combined to obtain a complete characterization of the surfaces. Different materials have been analyzed: SiO(x)N(y), InGaN/GaN quantum wells and Si nanowires, grown with different techniques. Notwithstanding the presence of grain-like structures on all the samples analyzed, they present very diverse surface design, underlying that this procedure can be of general use. Our results show that the quantitative analysis of nanostructured surfaces allows us to obtain interesting information, such as grain clustering, from the comparison of the lateral correlation length and the grain size.

6.
ACS Appl Mater Interfaces ; 7(31): 16992-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26177652

RESUMO

In the present article we report enhanced light absorption, tunable size-dependent blue shift, and efficient electron-hole pairs generation in Ge nanoporous films (np-Ge) grown on Si. The Ge films are grown by sputtering and molecular beam epitaxy; subsequently, the nanoporous structure is obtained by Ge+ self-implantation. We show, by surface photovoltage spectroscopy measurements, blue shift of the optical energy gap and strong signal enhancement effects in the np-Ge films. The blue shift is related to quantum confinement effects at the wall separating the pore in the structure, the signal enhancement to multiple light-scattering events, which result in enhanced absorption. All these characteristics are highly stable with time. These findings demonstrate that nanoporous Ge films can be very promising for photovoltaic applications.

7.
Nano Lett ; 13(12): 5900-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224918

RESUMO

It is demonstrated that boron-doped nanowires have predominantly long-term stable wurtzite phase while the majority of phosphorus-doped ones present diamond phase. A simplified model based on the different solubility of boron and phosphorus in gold is proposed to explain their diverse effectiveness in retaining the wurtzite phase. The wurtzite nanowires present a direct transition at the Γ point at approximately 1.5 eV while the diamond ones have a predominant emission around 1.1 eV. The aforementioned results are intriguing for innovative solar cell devices.


Assuntos
Boro/química , Nanofios/química , Energia Solar , Ouro/química , Humanos , Fósforo/química , Silício/química
8.
Nanotechnology ; 24(14): 145701, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23481290

RESUMO

Here, we report on significant material information provided by semi-contact phase-images in a wide range of hard III-nitride surfaces. We show that the phase contrast, which is fundamentally related to the energy dissipation during tip-surface interaction, is sensitive to the crystalline nature of the material and thus could potentially be used to determine the crystalline quality of thin nitride layers. Besides, we found that the structural defects, especially threading dislocations and cracks, act as selective sites where energy mainly dissipates. Consequently, in nitrides defects with very low dimensions can actually be imaged with phase-contrast imaging.

9.
Nanotechnology ; 21(4): 045702, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20009176

RESUMO

Hydrogenated nanocrystalline silicon (nc-Si:H) is a multiphase, heterogeneous material, composed of Si nanocrystals embedded in an amorphous matrix. It has been intensively studied in the last few years due to its great promise for photovoltaic and optoelectronics applications. The present paper aims to study the current transport mechanisms in nc-Si:H by mapping the local conductivity at the nanoscale. The role of B doping in nc-Si:H is also investigated. Conductivity maps are obtained by atomic force microscopy using a conductive tip. Differences and similarities between intrinsic and doped nc-Si:H conductivity maps were observed and these are also explained on the basis of recently published computational studies.

10.
Nanotechnology ; 20(4): 045702, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19417328

RESUMO

Conductive atomic force microscopy (C-AFM) has been extensively used for making measurements of electrical properties of nanostructures, devices and multiphase materials. Despite its wide use, the mechanical and electrical interactions at the nanoscale between the tip and the sample surface are not yet well understood. These phenomena should be carefully studied and modeled in order to avoid significant measurement artifacts. In the present contribution a study of the interactions occurring between conductive tips and the surface of nanocrystalline silicon thin films that lead to measurement artifacts is presented. A significant deterioration of the tip coating was detected after a few maps, resulting in meaningless maps. The features of the map obtained dramatically depend on the tip coating characteristics and on the load conditions. Moreover, under a constant bias voltage, the electrical current passing through the tip-sample junction degenerates strongly with time. These phenomena were interpreted by considering the effect of strong electric fields present during C-AFM experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA