Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1127545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051019

RESUMO

Thapsigargin (TG) inhibits the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump and, when applied acutely, it initiates a Ca2+ mobilisation that begins with the loss of Ca2+ from the endoplasmic reticulum (ER) and culminates with store-operated Ca2+ entry (SOCE) from the extracellular space. Using the popular model cell line HEK-293, we quantified TG-induced changes in cytosolic and ER Ca2+ levels using FURA-2 and the FRET-based ER Ca2+ sensor D1ER, respectively. Our analysis predicts an ER Ca2+ leak of 5-6 µM⋅s-1 for the typical basal ER Ca2+ level of 335-407 µM in HEK-293 cells. The resulting cytosolic Ca2+ transients reached peak amplitudes of 0.6-1.0 µM in the absence of external Ca2+ and were amplified by SOCE that amounted to 28-30 nM⋅s-1 in 1 mM external Ca2+. Additionally, cytosolic Ca2+ transients were shaped by a Ca2+ clearance of 10-13 nM⋅s-1. Using puromycin (PURO), which enhances the ER Ca2+ leak, we show that TG-induced cytosolic Ca2+ transients are directly related to ER Ca2+ levels and to the ER Ca2+ leak. A one-compartment model incorporating ER Ca2+ leak and cytosolic Ca2+ clearance accounted satisfactorily for the basic features of TG-induced Ca2+ transients and underpinned the rule that an increase in amplitude associated with shortening of TG-induced cytosolic Ca2+ transients most likely reflects an increase in ER Ca2+ leak.

3.
Front Physiol ; 13: 880004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045752

RESUMO

Various cancer types including head and neck squamous cell carcinomas (HNSCC) show a frequent amplification of chromosomal region 3q26 that encodes, among others, for the SEC62 gene. Located in the ER membrane, this translocation protein is known to play a critical role as a potential driver oncogene in cancer development. High SEC62 expression levels were observed in various cancer entities and were associated with a poor outcome and increased metastatic burden. Because of its intracellular localization the SEC62 protein is poorly accessible for therapeutic antibodies, therefore a functional SEC62 knockdown represents the most promising mechanism of a potential antineoplastic targeted therapy. By stimulating the Ca2+ efflux from the ER lumen and thereby increasing cellular stress levels, a functional inhibition of SEC62 bears the potential to limit tumor growth and metastasis formation. In this study, two potential anti-metastatic and -proliferative agents that counteract SEC62 function were investigated in functional in vitro assays by utilizing an immortalized human hypopharyngeal cancer cell line as well as a newly established orthotopic murine in vivo model. Additionally, a CRISPR/Cas9 based SEC62 knockout HNSCC cell line was generated and functionally characterized for its relevance in HNSCC cell proliferation and migration as well as sensitivity to SEC62 targeted therapy in vitro.

4.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064074

RESUMO

The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.


Assuntos
Fenilbutiratos/farmacologia , Renina/metabolismo , Canais de Translocação SEC/genética , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Nefropatias/fisiopatologia , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Fenilbutiratos/metabolismo , Doenças Renais Policísticas , Transporte Proteico/genética , Renina/genética , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Biochem J ; 478(22): 4005-4024, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34726690

RESUMO

The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon 'breathing' during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone's stabilisation of the latter underpins the phenotype observed.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Macrolídeos/farmacologia , Canais de Translocação SEC/metabolismo , Animais , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células RAW 264.7
6.
Cell Rep ; 37(3): 109851, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686339

RESUMO

Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.


Assuntos
Cálcio/metabolismo , Adesão Celular , Proliferação de Células , Magnésio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Canais de Cátion TRPM/deficiência , Trofoblastos/metabolismo , Animais , Morte Celular , Linhagem da Célula , Células Cultivadas , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/patologia , Transdução de Sinais , Canais de Cátion TRPM/genética , Trofoblastos/patologia
7.
Cell Calcium ; 99: 102473, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560367

RESUMO

The endoplasmic reticulum (ER) is extensively remodelled during the development of professional secretory cells to cope with high protein production. Since ER is the principal Ca2+ store in the cell, we characterised the Ca2+ homeostasis in NALM-6 and RPMI 8226 cells, which are commonly used as human pre-B and antibody secreting plasma cell models, respectively. Expression levels of Sec61 translocons and the corresponding Sec61-mediated Ca2+ leak from ER, Ca2+ storage capacity and store-operated Ca2+ entry were significantly enlarged in the secretory RPMI 8226 cell line. Using an immunoglobulin M heavy chain producing HeLa cell model, we found that the enlarged Ca2+ storage capacity and Ca2+ leak from ER are linked to ER expansion. Our data delineates a developmental remodelling of Ca2+ homeostasis in professional secretory cells in which a high Sec61-mediated Ca2+ leak and, thus, a high Ca2+ turnover in the ER is backed up by enhanced store-operated Ca2+ entry.


Assuntos
Cálcio , Retículo Endoplasmático , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Células HeLa , Homeostase , Humanos , Canais de Translocação SEC/metabolismo
8.
Mol Microbiol ; 115(1): 28-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798330

RESUMO

Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61-dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61-translocon, and captures it in an open conformation that is translocation-incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG-translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows antibacterial activity toward clinically relevant strains. Furthermore, the antibacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG-dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.


Assuntos
Hidrazonas/farmacologia , Hidroxiureia/análogos & derivados , Canais de Translocação SEC/metabolismo , Antibacterianos/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrazonas/química , Hidroxiureia/química , Hidroxiureia/farmacologia , Proteínas de Membrana/metabolismo , Nitrorredutases/metabolismo , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC/efeitos dos fármacos
9.
FEBS J ; 287(21): 4612-4640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32133789

RESUMO

In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Transporte Proteico , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Especificidade por Substrato
10.
Cell Chem Biol ; 26(4): 571-583.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30799222

RESUMO

Eeyarestatin 1 (ES1) inhibits p97-dependent protein degradation, Sec61-dependent protein translocation into the endoplasmic reticulum (ER), and vesicular transport within the endomembrane system. Here, we show that ES1 impairs Ca2+ homeostasis by enhancing the Ca2+ leakage from mammalian ER. A comparison of various ES1 analogs suggested that the 5-nitrofuran (5-NF) ring of ES1 is crucial for this effect. Accordingly, the analog ES24, which conserves the 5-NF domain of ES1, selectively inhibited protein translocation into the ER, displayed the highest potency on ER Ca2+ leakage of ES1 analogs studied and induced Ca2+-dependent cell death. Using small interfering RNA-mediated knockdown of Sec61α, we identified Sec61 complexes as the targets that mediate the gain of Ca2+ leakage induced by ES1 and ES24. By interacting with the lateral gate of Sec61α, ES1 and ES24 likely capture Sec61 complexes in a Ca2+-permeable, open state, in which Sec61 complexes allow Ca2+ leakage but are translocation incompetent.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Hidrazonas/farmacologia , Hidroxiureia/análogos & derivados , Canais de Translocação SEC/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
11.
ACS Appl Mater Interfaces ; 10(48): 41129-41137, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387978

RESUMO

The ability to guide the growth of neurites is relevant for reconstructing neural networks and for nerve tissue regeneration. Here, a biofunctional hydrogel that allows light-based directional control of axon growth in situ is presented. The gel is covalently modified with a photoactivatable derivative of the short laminin peptidomimetic IKVAV. This adhesive peptide contains the photoremovable group 2-(4'-amino-4-nitro-[1,1'-biphenyl]-3-yl)propan-1-ol (HANBP) on the Lys rest that inhibits its activity. The modified peptide is highly soluble in water and can be simply conjugated to -COOH containing hydrogels via its terminal -NH2 group. Light exposure allows presentation of the IKVAV adhesive motif on a soft hydrogel at desired concentration and at defined position and time point. The photoactivated gel supports neurite outgrowth in embryonic neural progenitor cells culture and allows site-selective guidance of neurites extension. In situ exposure of cell cultures using a scanning laser allows outgrowth of neurites in desired pathways.


Assuntos
Materiais Revestidos Biocompatíveis/química , Laminina/química , Células-Tronco Neurais/metabolismo , Neuritos/metabolismo , Crescimento Neuronal , Fragmentos de Peptídeos/química , Peptidomiméticos/química , Animais , Hidrogéis/química , Camundongos , Células-Tronco Neurais/citologia
12.
Nat Commun ; 9(1): 3489, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154480

RESUMO

To fulfill its role in protein biogenesis, the endoplasmic reticulum (ER) depends on the Hsp70-type molecular chaperone BiP, which requires a constant ATP supply. However, the carrier that catalyzes ATP uptake into the ER was unknown. Here, we report that our screen of gene expression datasets for member(s) of the family of solute carriers that are co-expressed with BiP and are ER membrane proteins identifies SLC35B1 as a potential candidate. Heterologous expression of SLC35B1 in E. coli reveals that SLC35B1 is highly specific for ATP and ADP and acts in antiport mode. Moreover, depletion of SLC35B1 from HeLa cells reduces ER ATP levels and, as a consequence, BiP activity. Thus, human SLC35B1 may provide ATP to the ER and was named AXER (ATP/ADP exchanger in the ER membrane). Furthermore, we propose an ER to cytosol low energy response regulatory axis (termed lowER) that appears as central for maintaining ER ATP supply.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
13.
J Allergy Clin Immunol ; 141(4): 1427-1438, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28782633

RESUMO

BACKGROUND: Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE: We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS: Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS: We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION: We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.


Assuntos
Síndromes de Imunodeficiência/genética , Mutação/genética , Plasmócitos/patologia , Canais de Translocação SEC/genética , Agamaglobulinemia/genética , Agamaglobulinemia/metabolismo , Agamaglobulinemia/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Cálcio/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Exoma/genética , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Síndromes de Imunodeficiência/metabolismo , Plasmócitos/metabolismo , Transporte Proteico/genética , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Resposta a Proteínas não Dobradas/genética
14.
Front Physiol ; 8: 887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163222

RESUMO

The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases-the Sec61 channelopathies-and novel therapeutic concepts for their treatment.

15.
Cell Calcium ; 67: 156-165, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28416203

RESUMO

Transient receptor potential (TRP) channels are cation channels which participate in a wide variety of physiological processes in organisms ranging from fungi to humans. They fulfill roles in body homeostasis, are sensors for noxious chemicals and temperature in the mammalian somatosensory system and are activated by light stimulated phospholipase C activity in Drosophila or by hypertonicity in yeast. The transmembrane topology of TRP channels is similar to that of voltage-gated cation channels. TRP proteins assemble as tetramers with each subunit containing six transmembrane helices (S1-S6) and intracellular N- and C-termini. Here we focus on the emerging functions of the cytosolic S4-S5 linker on TRP channel gating. Most of this knowledge comes from pathogenic mutations within the S4-S5 linker that alter TRP channel activities. This knowledge has stimulated forward genetic approaches to identify additional residues around this region which are essential for channel gating and is supported, in part, by recent structures obtained for TRPV1, TRPV2, TRPV6, TRPA1, and TRPP2.


Assuntos
Canalopatias/genética , Ativação do Canal Iônico/genética , Mutação , Canais de Potencial de Receptor Transitório/química , Sequência de Aminoácidos , Animais , Canalopatias/classificação , Canalopatias/metabolismo , Canalopatias/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Humanos , Cinética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
16.
J Biol Chem ; 290(30): 18621-35, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26085089

RESUMO

In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca(2+) leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca(2+) leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic ß-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca(2+) imaging to monitor the effects on ER Ca(2+) leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca(2+) leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca(2+) leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic ß-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease.


Assuntos
Diabetes Mellitus/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Chaperona BiP do Retículo Endoplasmático , Inativação Gênica , Proteínas de Choque Térmico HSP40/genética , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC
17.
J Mol Biol ; 427(6 Pt A): 1159-75, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24968227

RESUMO

Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.


Assuntos
Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Transporte Proteico , Canais de Translocação SEC , Homologia de Sequência de Aminoácidos
18.
J Neuropathol Exp Neurol ; 73(6): 507-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24806299

RESUMO

Optic neuritis is a common clinical manifestation of the chronic inflammatory CNS disease multiple sclerosis that can result in persistent visual impairment caused by degeneration of optic nerve axons and apoptosis of retinal ganglion cells (RGCs). Using a model of experimental autoimmune encephalomyelitis with optic neuritis (Brown Norway rats), we show that administration of the N-methyl-D-aspartate (NMDA) receptor antagonists memantine or MK801 results in RGC protection, axon protection, and reduced demyelination of optic nerves. Calcium imaging revealed that RGC responses to glutamate stimulation predominantly occurred via NMDA receptors and were inhibited by memantine in a dose-dependent manner. In contrast, oligodendrocytes were mainly responsive through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor. This suggests that NMDA receptor blockade protected RGCs directly and that the protection was independent of effects on oligodendrocytes. Moreover, increased RGC survival was observed before the onset of optic nerve demyelination--when RGC degeneration had already started. These results indicate an important pathophysiologic role for NMDA receptor-mediated glutamate toxicity during the induction phase of this disease model and highlight a potential target for therapeutic neuroprotection in human optic neuritis.


Assuntos
Maleato de Dizocilpina/uso terapêutico , Memantina/uso terapêutico , Neurite Autoimune Experimental/complicações , Fármacos Neuroprotetores/uso terapêutico , Neurite Óptica/complicações , Neurite Óptica/tratamento farmacológico , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Citocinas/sangue , Feminino , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Neurite Autoimune Experimental/induzido quimicamente , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Nervo Óptico/patologia , Neurite Óptica/patologia , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Estilbamidinas
19.
Channels (Austin) ; 8(1): 76-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24088629

RESUMO

According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca(2+)-calmodulin. In single channel measurements, the open Sec61 complex is Ca(2+) permeable. It can be closed not only by interaction with BiP or Ca(2+)-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca(2+) leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.


Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Exotoxinas/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Células HeLa , Humanos , Oligopeptídeos/metabolismo , Canais de Translocação SEC , Exotoxina A de Pseudomonas aeruginosa
20.
BMC Cancer ; 13: 574, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304694

RESUMO

BACKGROUND: Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca²âº. SEC62 silencing leads to elevated cytosolic Ca²âº and increased ER Ca²âº leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. METHODS: In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca²âº imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca²âº homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca²âº-sensitive interaction of Sec62 with the Sec61 complex. RESULTS: Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca²âº leakage channel in the ER, Sec61, by a direct and Ca²âº-sensitive interaction. A Ca²âº-binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. CONCLUSIONS: Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options.


Assuntos
Calmodulina/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Sesterterpenos/farmacologia , Trifluoperazina/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Proliferação de Células , Expressão Gênica , Células HEK293 , Células HeLa , Homeostase , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fenótipo , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA