Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 40(4): 1098-1122, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33270248

RESUMO

Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Misturas Complexas , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Aquat Toxicol ; 184: 103-115, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28129603

RESUMO

One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone's activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC-MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50µgL-1) for 21days. Metabolite profiles were affected at the two highest concentrations (5 and 50µgL-1), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17ß-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., l-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also affected amino acid, tryptophan, and fatty acid metabolism. Thus, by identifying possible key events related to changes in biochemical pathways, this approach built upon an established AOP describing spironolactone's androgenic properties and highlighted broader implications potentially unrelated to androgen receptor activation, which could form a basis for the development of an AOP network.


Assuntos
Cyprinidae/fisiologia , Metabolômica , Receptores Androgênicos/genética , Espironolactona/toxicidade , Androgênios/genética , Animais , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Testosterona/genética , Vitelogeninas/genética , Poluentes Químicos da Água/toxicidade
3.
Aquat Toxicol ; 169: 19-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485527

RESUMO

Early-life stage fish can be more sensitive to toxicants than adults, so delineating mechanisms of perturbation of biological pathways by chemicals during this life stage is crucial. Whole-mount in situ hybridization (WISH) paired with quantitative real-time polymerase chain reaction (QPCR) assays can enhance pathway-based analyses through determination of specific tissues where changes in gene expression are occurring. While WISH has frequently been used in zebrafish (Danio rerio), this technology has not previously been applied to fathead minnows (Pimephales promelas), another well-established small fish model species. The objective of the present study was to adapt WISH to fathead minnow embryos and larvae, and use the approach to evaluate the effects of estrone, an environmentally-relevant estrogen receptor (ER) agonist. Embryos were exposed via the water to 0, 18 or 1800 ng estrone/L (0, 0.067 and 6.7nM) for 3 or 6 days in a solvent-free, flow-through test system. Relative transcript abundance of three estrogen-responsive genes, estrogen receptor-α (esr1), cytochrome P450-aromatase B (cyp19b), and vitellogenin (vtg) was examined in pooled whole embryos using QPCR, and the spatial distribution of up-regulated gene transcripts was examined in individual fish using WISH. After 3 days of exposure to 1800 ng estrone/L, esr1 and cyp19b were significantly up-regulated, while vtg mRNA expression was not affected. After 6 days of exposure to 1800 ng estrone/L, transcripts for all three genes were significantly up-regulated. Corresponding WISH assays revealed spatial distribution of esr1 and vtg in the liver region, an observation consistent with activation of the hepatic ER. This study clearly demonstrates the potential utility of WISH, in conjunction with QPCR, to examine the mechanistic basis of the effects of toxicants on early-life stage fathead minnows.


Assuntos
Cyprinidae/embriologia , Embrião não Mamífero/efeitos dos fármacos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Animais , Aromatase/genética , Aromatase/metabolismo , Bioensaio , Embrião não Mamífero/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/genética , Estrogênios/metabolismo , Hibridização In Situ , Larva , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Vitelogeninas/genética , Vitelogeninas/metabolismo
4.
Environ Sci Technol ; 49(5): 3091-100, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25607249

RESUMO

The application of 'omics tools to biologically based monitoring and surveillance of aquatic environments shows considerable promise for complementing chemical monitoring in ecological risk assessments. However, few of the current approaches offer the ability to sample ecologically relevant species (e.g., fish) in a way that produces minimal impact on the health of the organism(s) under study. In the current study we employ liquid chromatography tandem mass spectrometry (LC-MS/MS) to assess the potential for skin mucus-based metabolomics for minimally invasive sampling of the fathead minnow (FHM; Pimephales promelas). Using this approach we were able to detect 204 distinct metabolites in the FHM skin mucus metabolome representing a large number of metabolite classes. An analysis of the sex specificity of the skin mucus metabolome showed it to be highly sexually dimorphic with 72 of the detected metabolites showing a statistically significant bias with regard to sex. Finally, in a proof-of-concept fashion we report on the use of skin mucus-based metabolomics to assess exposures in male and female fathead minnows to an environmentally relevant concentration of bisphenol A, a nearly ubiquitous environmental contaminant and an established endocrine active chemical.


Assuntos
Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Metaboloma , Muco/química , Pele/química , Poluentes Químicos da Água/análise , Animais , Metabolômica
5.
Environ Sci Technol ; 47(18): 10628-36, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23919260

RESUMO

A field-based metabolomic study was conducted during a shutdown of a pulp and paper mill (PPM) to assess the impacts of treated PPM effluent on endogenous polar metabolites in fathead minnow (FHM; Pimephales promelas) livers. Caged male and female FHMs were deployed at a Great Lakes area of concern during multiple periods (pre-, during, and post-shutdown) near the outflow for a wastewater treatment plant. Influent to this plant is typically 40% PPM effluent by volume. Additional FHMs were exposed to reference lake water under laboratory conditions. A bioassay using T47D-KBluc cells showed that estrogenic activity of receiving water near the outflow declined by 46% during the shutdown. We then used (1)H NMR spectroscopy and principal component analysis to profile abundances of hepatic endogenous metabolites for FHMs. Profiles for males deployed pre-shutdown in receiving water were significantly different from those for laboratory-control males. Profiles were not significantly different for males deployed during the shutdown, but they were significant again for those deployed post-shutdown. Impacts of treated effluent from this PPM were sex-specific, as differences among profiles of females were largely nonsignificant. Thus, we demonstrate the potential utility of field-based metabolomics for performing biologically based exposure monitoring and evaluating remediation efforts occurring throughout the Great Lakes and other ecosystems.


Assuntos
Cyprinidae/metabolismo , Estrogênios/toxicidade , Resíduos Industriais/efeitos adversos , Papel , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Fígado/metabolismo , Masculino , Metabolômica , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA