Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(8): e0014823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565749

RESUMO

Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.


Assuntos
Citomegalovirus , Infecção Latente , Animais , Humanos , Camundongos , Antígenos CD34/genética , Antígenos CD34/metabolismo , Citomegalovirus/fisiologia , Camundongos Endogâmicos NOD , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral
2.
J Virol ; 97(7): e0075823, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338407

RESUMO

Liver X receptor (LXR) signaling broadly restricts virus replication; however, the mechanisms of restriction are poorly defined. Here, we demonstrate that the cellular E3 ligase LXR-inducible degrader of low-density lipoprotein receptor (IDOL) targets the human cytomegalovirus (HMCV) UL136p33 protein for turnover. UL136 encodes multiple proteins that differentially impact latency and reactivation. UL136p33 is a determinant of reactivation. UL136p33 is targeted for rapid turnover by the proteasome, and its stabilization by mutation of lysine residues to arginine results in a failure to quiet replication for latency. We show that IDOL targets UL136p33 for turnover but not the stabilized variant. IDOL is highly expressed in undifferentiated hematopoietic cells where HCMV establishes latency but is sharply downregulated upon differentiation, a stimulus for reactivation. We hypothesize that IDOL maintains low levels of UL136p33 for the establishment of latency. Consistent with this hypothesis, knockdown of IDOL impacts viral gene expression in wild-type (WT) HCMV infection but not in infection where UL136p33 has been stabilized. Furthermore, the induction of LXR signaling restricts WT HCMV reactivation from latency but does not affect the replication of a recombinant virus expressing a stabilized variant of UL136p33. This work establishes the UL136p33-IDOL interaction as a key regulator of the bistable switch between latency and reactivation. It further suggests a model whereby a key viral determinant of HCMV reactivation is regulated by a host E3 ligase and acts as a sensor at the tipping point between the decision to maintain the latent state or exit latency for reactivation. IMPORTANCE Herpesviruses establish lifelong latent infections, which pose an important risk for disease particularly in the immunocompromised. Our work is focused on the betaherpesvirus human cytomegalovirus (HCMV) that latently infects the majority of the population worldwide. Defining the mechanisms by which HCMV establishes latency or reactivates from latency is important for controlling viral disease. Here, we demonstrate that the cellular inducible degrader of low-density lipoprotein receptor (IDOL) targets a HCMV determinant of reactivation for degradation. The instability of this determinant is important for the establishment of latency. This work defines a pivotal virus-host interaction that allows HCMV to sense changes in host biology to navigate decisions to establish latency or to replicate.


Assuntos
Citomegalovirus , Ubiquitina-Proteína Ligases , Humanos , Citomegalovirus/fisiologia , Receptores X do Fígado , Ubiquitina-Proteína Ligases/genética , Latência Viral/genética , Proteínas Virais/metabolismo , Lipoproteínas LDL
3.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747736

RESUMO

Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD- scid IL2Rγ c null (NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation. SIGNIFICANCE: Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.

4.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696439

RESUMO

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Genética Reversa/métodos , Linhagem Celular , Surtos de Doenças , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Genoma Viral/genética , Genótipo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Contramedidas Médicas , Fenótipo , Filogenia
5.
Nat Commun ; 11(1): 5921, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219225

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.


Assuntos
Betacoronavirus/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Bioensaio , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Fluorescência , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2
6.
Viruses ; 12(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872451

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.


Assuntos
Infecções por Bunyaviridae/virologia , Febres Hemorrágicas Virais/virologia , Phlebovirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/metabolismo , Feminino , Genoma Viral , Humanos , Masculino , Camundongos , Phlebovirus/fisiologia , Filogenia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , República da Coreia , Carrapatos/virologia
7.
bioRxiv ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511415

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

8.
Lancet Infect Dis ; 19(6): 648-657, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000464

RESUMO

BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Assuntos
Anticorpos Monoclonais/genética , Antivirais/uso terapêutico , Vacinas contra Ebola/uso terapêutico , Ebolavirus/genética , Genômica , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Humanos , Contramedidas Médicas , Estudos Retrospectivos
9.
Lancet Infect Dis ; 19(6): 641-647, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000465

RESUMO

BACKGROUND: The 2018 Ebola virus disease (EVD) outbreak in Équateur Province, Democratic Republic of the Congo, began on May 8, and was declared over on July 24; it resulted in 54 documented cases and 33 deaths. We did a retrospective genomic characterisation of the outbreak and assessed potential therapeutic agents and vaccine (medical countermeasures). METHODS: We used target-enrichment sequencing to produce Ebola virus genomes from samples obtained in the 2018 Équateur Province outbreak. Combining these genomes with genomes associated with known outbreaks from GenBank, we constructed a maximum-likelihood phylogenetic tree. In-silico analyses were used to assess potential mismatches between the outbreak strain and the probes and primers of diagnostic assays and the antigenic sites of the experimental rVSVΔG-ZEBOV-GP vaccine and therapeutics. An in-vitro flow cytometry assay was used to assess the binding capability of the individual components of the monoclonal antibody cocktail ZMapp. FINDINGS: A targeted sequencing approach produced 16 near-complete genomes. Phylogenetic analysis of these genomes and 1011 genomes from GenBank revealed a distinct cluster, confirming a new Ebola virus variant, for which we propose the name "Tumba". This new variant appears to have evolved at a slower rate than other Ebola virus variants (0·69 × 10-3 substitutions per site per year with "Tumba" vs 1·06 × 10-3 substitutions per site per year without "Tumba"). We found few sequence mismatches in the assessed assay target regions and antigenic sites. We identified nine amino acid changes in the Ebola virus surface glycoprotein, of which one resulted in reduced binding of the 13C6 antibody within the ZMapp cocktail. INTERPRETATION: Retrospectively, we show the feasibility of using genomics to rapidly characterise a new Ebola virus variant within the timeframe of an outbreak. Phylogenetic analysis provides further indications that these variants are evolving at differing rates. Rapid in-silico analyses can direct in-vitro experiments to quickly assess medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Assuntos
Antivirais/uso terapêutico , Surtos de Doenças , Vacinas contra Ebola/uso terapêutico , Ebolavirus/genética , Genômica , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/epidemiologia , República Democrática do Congo/epidemiologia , Humanos , Estudos Retrospectivos
10.
Proc Natl Acad Sci U S A ; 114(49): E10586-E10595, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158406

RESUMO

The transcriptional program associated with herpesvirus latency and the viral genes regulating entry into and exit from latency are poorly understood and controversial. Here, we developed and validated a targeted enrichment platform and conducted large-scale transcriptome analyses of human cytomegalovirus (HCMV) infection. We used both an experimental hematopoietic cell model of latency and cells from naturally infected, healthy human subjects (clinical) to define the breadth of viral genes expressed. The viral transcriptome derived from experimental infection was highly correlated with that from clinical infection, validating our experimental latency model. These transcriptomes revealed a broader profile of gene expression during infection in hematopoietic cells than previously appreciated. Further, using recombinant viruses that establish a nonreactivating, latent-like or a replicative infection in CD34+ hematopoietic progenitor cells, we defined classes of low to moderately expressed genes that are differentially regulated in latent vs. replicative states of infection. Most of these genes have yet to be studied in depth. By contrast, genes that were highly expressed, were expressed similarly in both latent and replicative infection. From these findings, a model emerges whereby low or moderately expressed genes may have the greatest impact on regulating the switch between viral latency and replication. The core set of viral genes expressed in natural infection and differentially regulated depending on the pattern of infection provides insight into the HCMV transcriptome associated with latency in the host and a resource for investigating virus-host interactions underlying persistence.


Assuntos
Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno , Transcriptoma , Latência Viral , Linhagem Celular , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/metabolismo , Fibroblastos/virologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/virologia , Humanos , Cultura Primária de Células , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
11.
Curr Opin Virol ; 23: 43-48, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28340374

RESUMO

Ebola virus (EBOV) causes severe acute human disease with high lethality. Viremia is typical during the acute disease phase. However, EBOV RNA can remain detectable in immune-privileged tissues for prolonged periods of time after clearance from the blood, suggesting EBOV may persist during convalescence and thereafter. Eliminating persistent EBOV is important to ensure full recovery of survivors and decrease the risk of outbreak re-ignition caused by EBOV spread from apparently healthy survivors to naive contacts. Here, we review prior evidence of EBOV persistence and explore the tools needed for the development of model systems to understand persistence.


Assuntos
Portador Sadio/virologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos
12.
J Virol ; 90(20): 9483-94, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512069

RESUMO

UNLABELLED: The UL133-138 locus present in clinical strains of human cytomegalovirus (HCMV) encodes proteins required for latency and reactivation in CD34(+) hematopoietic progenitor cells and virion maturation in endothelial cells. The encoded proteins form multiple homo- and hetero-interactions and localize within secretory membranes. One of these genes, UL136 gene, is expressed as at least five different protein isoforms with overlapping and unique functions. Here we show that another gene from this locus, the UL138 gene, also generates more than one protein isoform. A long form of UL138 (pUL138-L) initiates translation from codon 1, possesses an amino-terminal signal sequence, and is a type one integral membrane protein. Here we identify a short protein isoform (pUL138-S) initiating from codon 16 that displays a subcellular localization similar to that of pUL138-L. Reporter, short-term transcription, and long-term virus production assays revealed that both pUL138-L and pUL138-S are able to suppress major immediate early (IE) gene transcription and the generation of infectious virions in cells in which HCMV latency is studied. The long form appears to be more potent at silencing IE transcription shortly after infection, while the short form seems more potent at restricting progeny virion production at later times, indicating that both isoforms of UL138 likely cooperate to promote HCMV latency. IMPORTANCE: Latency allows herpesviruses to persist for the lives of their hosts in the face of effective immune control measures for productively infected cells. Controlling latent reservoirs is an attractive antiviral approach complicated by knowledge deficits for how latently infected cells are established, maintained, and reactivated. This is especially true for betaherpesviruses. The functional consequences of HCMV UL138 protein expression during latency include repression of viral IE1 transcription and suppression of virus replication. Here we show that short and long isoforms of UL138 exist and can themselves support latency but may do so in temporally distinct manners. Understanding the complexity of gene expression and its impact on latency is important for considering potential antivirals targeting latent reservoirs.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , Inativação Gênica/fisiologia , Proteínas Imediatamente Precoces/genética , Isoformas de Proteínas/genética , Proteínas Virais/genética , Latência Viral/genética , Linhagem Celular , Códon/genética , Células Endoteliais/virologia , Expressão Gênica/genética , Células-Tronco Hematopoéticas/virologia , Humanos , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Vírion/genética
13.
mBio ; 7(2): e01986, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26933055

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34(+) hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2Rγc (null) humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34(+) HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection. IMPORTANCE: The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence.


Assuntos
Citomegalovirus/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Virais/metabolismo , Latência Viral , Replicação Viral , Animais , Linhagem Celular , Infecções por Citomegalovirus/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Biológicos
14.
J Virol ; 88(24): 14412-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25297993

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) is a complex DNA virus with a 230-kb genome encoding 170 and up to 750 proteins. The upper limit of this coding capacity suggests the evolution of complex mechanisms to substantially increase the coding potential from the 230-kb genome. Our work examines the complexity of one gene, UL136, encoded within the ULb' region of the genome that is lost during serial passage of HCMV in cultured fibroblasts. UL136 is expressed as five protein isoforms. We mapped these isoforms and demonstrate that they originate from both a complex transcriptional profile and, possibly, the usage of multiple translation initiation sites. Intriguingly, the pUL136 isoforms exhibited distinct subcellular distributions with varying association with the Golgi apparatus. The subcellular localization of membrane-bound isoforms of UL136 differed between when they were expressed exogenously and when they were expressed in the context of viral infection, suggesting that the trafficking of these isoforms is mediated by infection-specific factors. While UL136, like most ULb' genes, was dispensable for replication in fibroblasts, the soluble 23- and 19-kDa isoforms suppressed virus replication. In CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, disruption of the 23- and 19-kDa isoforms resulted in increased replication and a loss of the latency phenotype, similar to the effects of the UL138 latency determinant encoded within the same genetic locus. Our work suggests a complex interplay between the UL136 isoforms which balances viral replication in multiple cell types and likely contributes to the cell type-dependent phenotypes of the UL133/8 locus and the outcome of HCMV infection. IMPORTANCE: HCMV is a significant cause of morbidity in immunocompromised individuals, including transplant patients. The lifelong persistence of the virus results in a high seroprevalence worldwide and may contribute to age-related pathologies, such as atherosclerosis. The mechanisms of viral persistence are poorly understood; however, understanding the molecular basis of persistence is imperative for the development of new treatments. In this work, we characterize a complex HCMV gene, UL136, which is expressed as five protein isoforms. These isoforms arise predominantly from complex transcriptional mechanisms, which contribute to an increased coding capacity of the virus. Further, the UL136 isoforms oppose the activity of one another to balance HCMV replication in multiple cell types. We identify soluble isoforms of UL136 that function to suppress virus replication in fibroblasts and in CD34(+) HPCs for latency.


Assuntos
Citomegalovirus/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células Cultivadas , Fibroblastos/virologia , Deleção de Genes , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/virologia , Humanos , Organelas/química , Isoformas de Proteínas/genética , Proteínas Virais/genética
15.
J Virol ; 88(11): 5987-6002, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623432

RESUMO

UNLABELLED: The mechanisms by which viruses persist and particularly those by which viruses actively contribute to their own latency have been elusive. Here we report the existence of opposing functions encoded by genes within a polycistronic locus of the human cytomegalovirus (HCMV) genome that regulate cell type-dependent viral fates: replication and latency. The locus, referred to as the UL133-UL138 (UL133/8) locus, encodes four proteins, pUL133, pUL135, pUL136, and pUL138. As part of the ULb' region of the genome, the UL133/8 locus is lost upon serial passage of clinical strains of HCMV in cultured fibroblasts and is therefore considered dispensable for replication in this context. Strikingly, we could not reconstitute infection in permissive fibroblasts from bacterial artificial chromosome clones of the HCMV genome where UL135 alone was disrupted. The loss of UL135 resulted in complex phenotypes and could ultimately be overcome by infection at high multiplicities. The requirement for UL135 but not the entire locus led us to hypothesize that another gene in this locus suppressed virus replication in the absence of UL135. The defect associated with the loss of UL135 was largely rescued by the additional disruption of the UL138 latency determinant, indicating a requirement for UL135 for virus replication when UL138 is expressed. In the CD34(+) hematopoietic progenitor model of latency, viruses lacking only UL135 were defective for viral genome amplification and reactivation. Taken together, these data indicate that UL135 and UL138 comprise a molecular switch whereby UL135 is required to overcome UL138-mediated suppression of virus replication to balance states of latency and reactivation. IMPORTANCE: Mechanisms by which viruses persist in their host remain one of the most poorly understood phenomena in virology. Herpesviruses, including HCMV, persist in an incurable, latent state that has profound implications for immunocompromised individuals, including transplant patients. Further, the latent coexistence of HCMV may increase the risk of age-related pathologies, including vascular disease. The key to controlling or eradicating HCMV lies in understanding the molecular basis for latency. In this work, we describe the complex interplay between two viral proteins, pUL135 and pUL138, which antagonize one another in infection to promote viral replication or latency, respectively. We previously described the role of pUL138 in suppressing virus replication for latency. Here we demonstrate a role of pUL135 in overcoming pUL138-mediated suppression for viral reactivation. From this work, we propose that pUL135 and pUL138 constitute a molecular switch balancing states of latency and reactivation.


Assuntos
Infecções por Citomegalovirus/fisiopatologia , Citomegalovirus/genética , Proteínas Virais/genética , Latência Viral/genética , Replicação Viral/genética , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Infecções por Citomegalovirus/genética , Primers do DNA/genética , Fibroblastos , Loci Gênicos/genética , Vetores Genéticos/genética , Humanos , Immunoblotting , Microscopia Eletrônica de Transmissão
16.
Cell Microbiol ; 14(5): 644-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22329758

RESUMO

Viral persistence is the rule following infection with all herpesviruses. The ß-herpesvirus, human cytomegalovirus (HCMV), persists through chronic and latent states of infection. Both of these states of infection contribute to HCMV persistence and to the high HCMV seroprevalence worldwide. The chronic infection is poorly defined molecularly, but clinically manifests as low-level virus shedding over extended periods of time and often in the absence of symptoms. Latency requires long-term maintenance of viral genomes in a reversibly quiescent state in the immunocompetent host. In this review, we focus on recent advances in the biology of HCMV persistence, particularly with respect to the latent mode of persistence. Latently infected individuals harbour HCMV genomes in haematopoietic cells and maintain large subsets of HCMV-specific T-cells. In the last few years, impressive advances have been made in understanding virus-host interactions important to HCMV infection, many of which will profoundly impact HCMV persistence. We discuss these advances and their known or potential impact on viral latency. As herpesviruses are met with similar challenges in achieving latency and often employ conserved strategies to persist, we discuss current and future directions of HCMV persistence in the context of the greater body of knowledge regarding α- and γ-herpesviruses persistence.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Interações Hospedeiro-Patógeno , Latência Viral , Doença Crônica , Humanos , Evasão da Resposta Imune , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA