Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453260

RESUMO

Rifampicin is a critical first-line antibiotic for treating mycobacterial infections such as tuberculosis, one of the most serious infectious diseases worldwide. Rifampicin resistance in mycobacteria is mainly caused by mutations in the rpoB gene; however, some rifampicin-resistant strains showed no rpoB mutations. Therefore, alternative mechanisms must explain this resistance in mycobacteria. In this work, a library of 11,000 Mycobacterium smegmatis mc2 155 insertion mutants was explored to search and characterize new rifampicin-resistance determinants. A transposon insertion in the MSMEG_1945 gene modified the growth rate, pH homeostasis and membrane potential in M. smegmatis, producing rifampicin resistance and collateral susceptibility to other antitubercular drugs such as isoniazid, ethionamide and aminoglycosides. Our data suggest that the M. smegmatis MSMEG_1945 protein is an ion channel, dubbed MchK, essential for maintaining the cellular ionic balance and membrane potential, modulating susceptibility to antimycobacterial agents. The functions of this new gene point once again to potassium homeostasis impairment as a proxy to resistance to rifampicin. This study increases the known repertoire of mycobacterial ion channels involved in drug susceptibility/resistance to antimycobacterial drugs and suggests novel intervention opportunities, highlighting ion channels as druggable pathways.

2.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070467

RESUMO

The DNA repair endonuclease EndoMS/NucS is highly conserved in Archaea and Actinobacteria. This enzyme is able to recognize and cleave dsDNA carrying a mismatched base pair, and its activity is enhanced by the interaction with the sliding clamp of the replisome. Today, EndoMS/NucS has been established as the key protein of a non-canonical mismatch repair (MMR) pathway, acting specifically in the repair of transitions and being essential for maintaining genome stability. Despite having some particularities, such as its lower activity on transversions and the inability to correct indels, EndoMS/NucS meets the main hallmarks of a MMR. Its absence leads to a hypermutator phenotype, a transition-biased mutational spectrum and an increase in homeologous recombination. Interestingly, polymorphic EndoMS/NucS variants with a possible effect in mutation rate have been detected in clinical isolates of the relevant actinobacterial pathogen Mycobacterium tuberculosis. Considering that MMR defects are often associated with the emergence of resistant bacteria, the existence of EndoMS/NucS-defective mutators could have an important role in the acquisition of antibiotic resistance in M. tuberculosis. Therefore, a further understanding of the EndoMS/NucS-mediated non-canonical MMR pathway may reveal new strategies to predict and fight drug resistance. This review is focused on the recent progress in NucS, with special emphasis on its effect on genome stability and evolvability in Actinobacteria.


Assuntos
Actinobacteria , Proteínas de Bactérias/metabolismo , Reparo de Erro de Pareamento de DNA , Actinobacteria/genética , Actinobacteria/metabolismo , Pareamento Incorreto de Bases , Instabilidade Genômica , Taxa de Mutação
3.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213902

RESUMO

The emergence of bacteria that co-express serine- and metallo- carbapenemases is a threat to the efficacy of the available ß-lactam antibiotic armamentarium. The 4-amino-1,2,4-triazole-3-thione scaffold has been selected as the starting chemical moiety in the design of a small library of ß-Lactamase inhibitors (BLIs) with extended activity profiles. The synthesised compounds have been validated in vitro against class A serine ß-Lactamase (SBLs) KPC-2 and class B1 metallo ß-Lactamases (MBLs) VIM-1 and IMP-1. Of the synthesised derivatives, four compounds showed cross-class micromolar inhibition potency and therefore underwent in silico analyses to elucidate their binding mode within the catalytic pockets of serine- and metallo-BLs. Moreover, several members of the synthesised library have been evaluated, in combination with meropenem (MEM), against clinical strains that overexpress BLs for their ability to synergise carbapenems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA