Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemphyschem ; 23(7): e202100659, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092633

RESUMO

One major challenge of future sustainable photochemistry is to replace precious and rare transition metals in applications such as energy conversion or electroluminescence by earth-abundant, cheap, and recyclable materials. This involves using coordination complexes of first row transition metals such as Cu, Cr, or Mn. In the case of iron, which is attractive due to its natural abundance, fundamental limitations imposed by the small ligand field splitting energy have recently been overcome. In this review article, we briefly summarize the present knowledge and understanding of the structure-property relationships of Fe(II) and Fe(III) complexes with excited state lifetimes in the nanosecond range. However, our main focus is to examine to which extent the ultrafast spectroscopy methods used so far provided insight into the excited state structure and the photo-induced dynamics of these complexes. Driven by the main question of how to spectroscopically, i. e. in energy and concentration, differentiate the population of ligand- vs. metal-centered states, the hitherto less exploited ultrafast vibrational spectroscopy is suggested to provide valuable complementary insights.


Assuntos
Complexos de Coordenação , Compostos Férricos , Complexos de Coordenação/química , Compostos Ferrosos/química , Estrutura Molecular , Análise Espectral
2.
ACS Org Inorg Au ; 2(6): 525-536, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36855530

RESUMO

The stereoselective synthesis of geometrical iron(II) complexes bearing azine-NHC ligands is described. Facial and meridional selectivity is achieved as a function of the steric demand of the azine unit, with no remarkable influence of the carbene nature. More specifically, meridional complexes are obtained upon selecting bulky 5-mesityl-substituted pyridyl coordinating units. Unexpectedly, increase of the steric hindrance in the α position with respect to the N coordinating atom results in an exclusive facial configuration, which is in stark contrast to the meridional selectivity induced by other reported α-substituted bidentate ligands. Investigation of the structure and the optical and electrochemical properties of the here-described complexes has revealed the non-negligible effect of the fac/mer ligand configuration around the metal center.

3.
Dalton Trans ; 49(10): 3102-3111, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32065186

RESUMO

Two novel rhenium(i) tricarbonyl complexes of general formula fac-[Re(N^C:)(CO)3X] are herein presented, where N^C: is the pyridoannelated N-heterocyclic carbene (NHC) arising from 2-(2-pyridinyl)imidazo[1,5-a]pyridinium hexafluorophosphate proligand, namely [pyipy]PF6, and X being Cl and Br. The synthetic pathway is a one-pot reaction that starts from the azolium salt as the NHC source and [Re(CO)5X] to yield the desired charge-neutral fac-[Re(pyipy)(CO)3X] complexes (1-2). Both complexes were thoroughly characterized by spectroscopic, electrochemical, theoretical investigation as well as X-ray diffraction analysis. They display a rather similar electronic absorption spectrum in dilute CH2Cl2 solution, which is characterized by a broad profile extending into the blue region. This lowest-lying absorption band is attributed to a transition with admixed metal-to-ligand charge transfer and intraligand charge transfer (1MLCT/1ILCT) character. Degassed samples of the complexes display moderate (Φ≈ 1.5%) and long-lived (τ = 12.8-13.4 µs) red photoluminescence with highly structured profile independent of the nature of the ancillary halogen ligand and little sensitivity to the solvent polarity, highlighting the markedly different nature of the emitting excited state in comparison with the lowest-lying absorption. Indeed, photoluminescence is ascribed to a long-lived excited state with metal-perturbed triplet ligand-centred (3LC) character as supported by both experimental and density functional theory (DFT) investigations.

4.
BMJ Open ; 10(1): e033332, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31964673

RESUMO

OBJECTIVES: To assess the prevalence of undiagnosed diabetes and pre-diabetes in the healthy population in the Mollerussa cohort. As a secondary objective, to identify the variables associated with these conditions and to describe the changes in glycaemic status after 1 year of follow-up in subjects with pre-diabetes. DESIGN: Prospective observational cohort study. SETTING: General population from a semi-rural area. PARTICIPANTS: The study included 583 participants without a diagnosis of diabetes recruited between March 2011 and July 2014. RESULTS: The prevalence of undiagnosed diabetes was 20, 3.4% (95% CI 2.6 to 4.2) and that of pre-diabetes was 229, 39.3% (37.3 to 41.3). Among those with pre-diabetes, 18.3% had isolated impaired fasting plasma glucose (FPG) (FPG: 100 to <126 mg/dL), 58.1% had isolated impaired glycated haemoglobin (HbA1c) (HbA1c 5.7 to <6.5) and 23.6% fulfilled both criteria. Follow-up data were available for 166 subjects; 41.6%(37.8 to 45.4) returned to normoglycaemia, 57.6% (57.8 to 61.4) persisted in pre-diabetes and 0.6% (0 to 1.2) progressed to diabetes. Individuals with pre-diabetes had worse cardiometabolic risk profiles and sociodemographic features than normoglycaemic subjects. In the logistic regression model, variables significantly associated with pre-diabetes were older age (OR; 95% CI) (1.033; 1.011 to 1.056), higher physical activity (0.546; 0.360 to 0.827), body mass index (1.121; 1.029 to 1.222) and a family history of diabetes (1.543; 1.025 to 2.323). The variables significantly associated with glycaemic normalisation were older age (0.948; 0.916 to 0.982) and body mass index (0.779; 0.651 to 0.931). CONCLUSIONS: Among adults in our region, the estimated prevalence of undiagnosed diabetes was 3.4% and that of pre-diabetes was 39.3%. After a 1-year follow-up, a small proportion of subjects (0.6%) with pre-diabetes progressed to diabetes, while a high proportion (41.6%) returned to normoglycaemia. Individuals with pre-diabetes who returned to normoglycaemia were younger and had a lower body mass index.


Assuntos
Glicemia/metabolismo , Jejum/sangue , Hemoglobinas Glicadas/metabolismo , Programas de Rastreamento/métodos , Estado Pré-Diabético/epidemiologia , População Rural , Adulto , Idoso , Índice de Massa Corporal , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Prevalência , Estudos Prospectivos , Fatores de Risco
5.
Dalton Trans ; 48(29): 10915-10926, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31149683

RESUMO

Ligand field enhancing N-heterocyclic carbene (NHC) ligands were recently shown to prevent photo-induced spin crossover in Fe(ii) complexes due to their intricate effects on the electronic excited state structure. Due to their pico- to nanosecond lifetimes, these complexes are now good candidates for photo-sensitizing applications. Herein we report the synthesis and photophysical characterization of a new family of homoleptic Fe(ii) complexes with C^N^C ligands involving diazines as the central N-heteroaromatic ligand. For these four carbene bond complexes, ultrafast transient absorption spectroscopy revealed a significant improvement of the excited-state lifetime. A record 32 ps lifetime was measured for a complex bearing a ligand combining a π-deficient pyrazine nucleus and a benzimidazolylidene as NHC. When compared to other azine-based ligands investigated, we argue that the lifetimes are modulated by a small excited state barrier expressing the ability of the ligand to reach the Fe-N distance needed for internal conversion to the ground state.

6.
Inorg Chem ; 58(8): 5069-5081, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30950264

RESUMO

The control of photophysical properties of iron complexes and especially of their excited states decay is a great challenge in the search for sustainable alternatives to noble metals in photochemical applications. Herein we report the synthesis and investigations of the photophysics of mer and fac iron complexes bearing bidentate pyridyl-NHC ligands, coordinating the iron with three ligand-field-enhancing carbene bonds. Ultrafast transient absorption spectroscopy reveals two distinct excited state populations for both mer and fac forms, ascribed to the populations of the T1 and the T2 states, respectively, which decay to the ground state via parallel pathways. We find 3-4 ps and 15-20 ps excited-state lifetimes, with respective amplitudes depending on the isomer. The longer lifetime exceeds the one reported for iron complexes with tridentate ligands analogues involving four iron-carbene bonds. By combining experimental and computational results, a mechanism based on the differential trapping of the triplet states in spin-crossover regions is proposed for the first time to explain the impact of the fac/ mer isomerism on the overall excited-state lifetimes. Our results clearly highlight the impact of bidentate pyridyl-NHC ligands on the photophysics of iron complexes, especially the paramount role of fac/ mer isomerism in modulating the overall decay process, which can be potentially exploited in the design of new Fe(II)-based photoactive compounds.

7.
JCI Insight ; 4(1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30626756

RESUMO

Podocyte injury is central to many forms of kidney disease, but transcriptional signatures reflecting podocyte injury and compensation mechanisms are challenging to analyze in vivo. Human kidney organoids derived from pluripotent stem cells (PSCs), a potentially new model for disease and regeneration, present an opportunity to explore the transcriptional plasticity of podocytes. Here, transcriptional profiling of more than 12,000 single cells from human PSC-derived kidney organoid cultures was used to identify robust and reproducible cell lineage gene expression signatures shared with developing human kidneys based on trajectory analysis. Surprisingly, the gene expression signature characteristic of developing glomerular epithelial cells was also observed in glomerular tissue from a kidney disease cohort. This signature correlated with proteinuria and inverse eGFR, and it was confirmed in an independent podocytopathy cohort. Three genes in particular were further characterized as potentially novel components of the glomerular disease signature. We conclude that cells in human PSC-derived kidney organoids reliably recapitulate the developmental transcriptional program of podocytes and other cell lineages in the human kidney and that transcriptional profiles seen in developing podocytes are reactivated in glomerular disease. Our findings demonstrate an approach to identifying potentially novel molecular programs involved in the pathogenesis of glomerulopathies.


Assuntos
Nefropatias/genética , Glomérulos Renais/metabolismo , Organoides/metabolismo , Transcriptoma , Adulto , Células-Tronco Embrionárias , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/patologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Podócitos/metabolismo , Análise de Célula Única , Técnicas de Cultura de Tecidos
8.
Front Physiol ; 9: 1588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483151

RESUMO

Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.

9.
Proc Natl Acad Sci U S A ; 115(45): E10605-E10614, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348760

RESUMO

Hox5 genes (Hoxa5, Hoxb5, Hoxc5) are exclusively expressed in the lung mesenchyme during embryogenesis, and the most severe phenotypes result from constitutive loss of function of all three genes. Because Hox5 triple null mutants exhibit perinatal lethality, the contribution of this paralogous group to postembryonic lung development is unknown. Intriguingly, expression of all three Hox5 genes peaks during the first 2 weeks after birth, reaching levels far exceeding those measured at embryonic stages, and surviving Hoxa5 single and Hox5 AabbCc compound mutants exhibit defects in the localization of alveolar myofibroblasts. To define the contribution of the entire Hox5 paralogous group to this process, we generated an Hoxa5 conditional allele to use with our existing null alleles for Hoxb5 and Hoxc5 Postnatally, mesenchymal deletion of Hoxa5 in an Hoxb5/Hoxc5 double-mutant background results in severe alveolar simplification. The elastin network required for alveolar formation is dramatically disrupted in Hox5 triple mutants, while the basal lamina, interstitial matrix, and fibronectin are normal. Alveolar myofibroblasts remain Pdgfrα+/SMA+ double positive and present in normal numbers, indicating that the irregular elastin network is not due to fibroblast differentiation defects. Rather, we observe that SMA+ myofibroblasts of Hox5 triple mutants are morphologically abnormal both in vivo and in vitro with highly reduced adherence to fibronectin. This loss of adhesion is a result of loss of the integrin heterodimer Itga5b1 in mutant fibroblasts. Collectively, these data show an important role for Hox5 genes in lung fibroblast adhesion necessary for proper elastin network formation during alveologenesis.


Assuntos
Adesão Celular , Elastina/metabolismo , Genes Homeobox , Miofibroblastos/citologia , Alvéolos Pulmonares/citologia , Alelos , Animais , Dimerização , Regulação da Expressão Gênica no Desenvolvimento , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Camundongos , Mutação , Miofibroblastos/metabolismo , Alvéolos Pulmonares/metabolismo
10.
Development ; 145(16)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166318

RESUMO

The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level.


Assuntos
Linhagem da Célula/fisiologia , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rim/embriologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Feto/citologia , Perfilação da Expressão Gênica , Humanos , Rim/citologia , Camundongos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA