RESUMO
The level of each RNA species depends on the balance between its rates of production and decay. Although previous studies have measured RNA decay across the genome in tissue culture and single-celled organisms, few experiments have been performed in intact complex tissues and organs. It is therefore unclear whether the determinants of RNA decay found in cultured cells are preserved in an intact tissue, and whether they differ between neighboring cell types and are regulated during development. To address these questions, we measured RNA synthesis and decay rates genome wide via metabolic labeling of whole cultured Drosophila larval brains using 4-thiouridine. Our analysis revealed that decay rates span a range of more than 100-fold, and that RNA stability is linked to gene function, with mRNAs encoding transcription factors being much less stable than mRNAs involved in core metabolic functions. Surprisingly, among transcription factor mRNAs there was a clear demarcation between more widely used transcription factors and those that are expressed only transiently during development. mRNAs encoding transient transcription factors are among the least stable in the brain. These mRNAs are characterized by epigenetic silencing in most cell types, as shown by their enrichment with the histone modification H3K27me3. Our data suggest the presence of an mRNA destabilizing mechanism targeted to these transiently expressed transcription factors to allow their levels to be regulated rapidly with high precision. Our study also demonstrates a general method for measuring mRNA transcription and decay rates in intact organs or tissues, offering insights into the role of mRNA stability in the regulation of complex developmental programs.
Assuntos
Drosophila , Fatores de Transcrição , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila/genética , Larva/genética , Larva/metabolismo , Encéfalo/metabolismo , Estabilidade de RNARESUMO
In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role.
Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Fator 2 Associado a Receptor de TNF/química , Fator 2 Associado a Receptor de TNF/metabolismo , Difusão , Fluorescência , Gangliosídeo G(M1)/metabolismo , Humanos , Fluidez de Membrana/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos , Lipossomas Unilamelares/metabolismoRESUMO
TNF receptor-associated factors (TRAFs) are characterized by an oligomeric structure that plays a fundamental role in the binding process with membrane receptors. In this work, we studied the trimer-to-monomer (T â 3M) equilibrium transition of the TRAF2 C-terminal domain using both chemical (dilution/guanidinium hydrochloride) and mechanical stress (high pressure) to induce the dissociation of the native protein into subunits. The experimental results and computer simulations indicate that stable monomers exist and that their population accounts for 15% of the total TRAF2 molecules already at a physiological intracellular concentration (≈1 µM), being instead the predominant species in the nanomolar concentration range. Because the total amount of TRAF2 changes during a cell cycle, the monomer-trimer equilibrium can be crucial for regulating the activities of TRAF2 in vivo.