Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(1): e12927, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272446

RESUMO

Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.


Assuntos
Dobramento de Proteína , Doenças Raras , Animais , Humanos , Doenças Raras/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Retículo Endoplasmático/metabolismo , Mutação , Mamíferos/metabolismo , Glucosiltransferases/metabolismo
2.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509383

RESUMO

Trop-2 proteolytic processing in cancer cells exposes epitopes that were specifically targeted by the 2G10 antibody. We sought additional recognition of Trop-2 within difficult-to-reach, densely packed tumor sites. Trop-2 deletion mutants were employed in immunization and screening procedures, and these led to the recognition of a novel epitope in the N-terminal region of Trop-2, by the 2EF antibody. The 2EF mAb was shown to bind Trop-2 at cell-cell junctions in MCF-7 breast cancer cells, and in deeply seated sites in prostate cancer, that were inaccessible to benchmark anti-Trop-2 antibodies. The 2EF antibody was shown to inhibit the growth of HT29 colon tumor cells in vitro, with the highest activity at high cell density. In vivo, 2EF showed anticancer activity against SKOv3 ovarian, Colo205, HT29, HCT116 colon and DU-145 prostate tumors, with the highest impact on densely packed tumor sites, whereby 2EF outcompeted benchmark anti-Trop-2 antibodies. Given the different recognition modes of Trop-2 by 2EF and 2G10, we hypothesized the effective interaction of the two mAb in vivo. The 2EF mAb was indeed demonstrated to enhance the activity of 2G10 against tumor xenotransplants, opening novel avenues for Trop-2-targeted therapy. We humanized 2EF by state-of-the-art CDR grafting/re-modeling, yielding the Hu2EF for therapy of Trop-2-expressing tumors in patients.

3.
Mol Cancer Ther ; 22(6): 790-804, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921314

RESUMO

Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 mAbs recognize a single immunodominant epitope. Hence, we removed it by deletion mutagenesis. Cancer-specific, glycosylation-prone mAbs were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art complementarity determining region grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd < 10-12 mol/L, and uncleaved/wtTrop-2 in normal cells with Kd 3.16×10-8 mol/L, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.


Assuntos
Imunoconjugados , Neoplasias da Próstata , Masculino , Humanos , Antígenos de Neoplasias/genética , Anticorpos Monoclonais/farmacologia
4.
Oncogene ; 41(12): 1795-1808, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132180

RESUMO

Trop-2 is a transmembrane signal transducer that is overexpressed in most human cancers, and drives malignant progression. To gain knowledge on the higher-order molecular mechanisms that drive Trop-2 signaling, we applied next-generation sequencing, proteomics, and high-resolution microscopy to models and primary cases of human colorectal cancer (CRC). We had previously shown that Trop-2 induces a Ca2+ signal. We reveal here that Trop-2 binds the cell membrane Na+/K+-ATPase, and that clustering of Trop-2 induces an intracellular Ca2+ rise followed by membrane translocation of PKCα, which in turn phosphorylates the Trop-2 cytoplasmic tail. This feed-forward signaling is promoted by the binding of Trop-2 to the PKCα membrane-anchor CD9. CRISPR-based inactivation of CD9 in CRC cells shows that CD9 is required by Trop-2 for recruiting PKCα and cofilin-1 to the cell membrane. This induces malignant progression through proteolytic cleavage of E-cadherin, remodeling of the ß-actin cytoskeleton, and activation of Akt and ERK. The interaction between Trop-2 and CD9 was validated in vivo in murine models of CRC growth and invasion. Overexpression of the components of this Trop-2-driven super-complex significantly worsened disease-free and overall survival of CRC patients, supporting a pivotal relevance in CRC malignant progression. Our findings demonstrate a previously unsuspected layer of cancer growth regulation, which is dormant in normal tissues, and is activated by Trop-2 in cancer cells.


Assuntos
Neoplasias Colorretais , Proteína Quinase C-alfa , Fatores de Despolimerização de Actina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Tetraspanina 29
5.
Neoplasia ; 23(9): 898-911, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320447

RESUMO

We recently reported that activation of Trop-2 through its cleavage at R87-T88 by ADAM10 underlies Trop-2-driven progression of colon cancer. However, the mechanism of action and pathological impact of Trop-2 in metastatic diffusion remain unexplored. Through searches for molecular determinants of cancer metastasis, we identified TROP2 as unique in its up-regulation across independent colon cancer metastasis models. Overexpression of wild-type Trop-2 in KM12SM human colon cancer cells increased liver metastasis rates in vivo in immunosuppressed mice. Metastatic growth was further enhanced by a tail-less, activated ΔcytoTrop-2 mutant, indicating the Trop-2 tail as a pivotal inhibitory signaling element. In primary tumors and metastases, transcriptome analysis showed no down-regulation of CDH1 by transcription factors for epithelial-to-mesenchymal transition, thus suggesting that the pro-metastatic activity of Trop-2 is through alternative mechanisms. Trop-2 can tightly interact with ADAM10. Here, Trop-2 bound E-cadherin and stimulated ADAM10-mediated proteolytic cleavage of E-cadherin intracellular domain. This induced detachment of E-cadherin from ß-actin, and loss of cell-cell adhesion, acquisition of invasive capability, and membrane-driven activation of ß-catenin signaling, which were further enhanced by the ΔcytoTrop-2 mutant. This Trop-2/E-cadherin/ß-catenin program led to anti-apoptotic signaling, increased cell migration, and enhanced cancer-cell survival. In patients with colon cancer, activation of this Trop-2-centered program led to significantly reduced relapse-free and overall survival, indicating a major impact on progression to metastatic disease. Recently, the anti-Trop-2 mAb Sacituzumab govitecan-hziy was shown to be active against metastatic breast cancer. Our findings define the key relevance of Trop-2 as a target in metastatic colon cancer.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias do Colo/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/metabolismo , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Antígenos CD/genética , Antígenos de Neoplasias/genética , Caderinas/genética , Moléculas de Adesão Celular/genética , Neoplasias do Colo/genética , Feminino , Células HCT116 , Células HT29 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Taxa de Sobrevida/tendências , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Neoplasia ; 23(4): 415-428, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839455

RESUMO

Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Sequência de Aminoácidos/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Metástase Neoplásica/patologia , Transplante de Neoplasias , Proteólise , Transdução de Sinais , Transplante Heterólogo
7.
Harmful Algae ; 80: 140-148, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502806

RESUMO

The benthic dinoflagellate Prorocentrum hoffmannianum M.A. Faust is typical of tropical warm waters and produces biotoxins responsible for diarrhetic shellfish poisoning (DSP). In this study, the effect of temperature and nutrient limitation on growth and toxin production of P. hoffmannianum isolated from field samples collected in the Florida Keys was investigated. Batch culture experiments were ran at two temperatures (i.e. 21 ± 0.1 and 27 ± 0.1 °C) and under nitrogen-limited (14.7 µmol L-1 N-NO3- and 18.1 µmol L-1 P-PO43-) and phosphorus-limited (441 µmol L-1 N-NO3- and 0.6 µmol L-1 P-PO43-) levels with respect to control nutrient conditions (441 µmol L-1 N-NO3-and 18.1 µmol L-1 P-PO43-). Both temperature and nutrient conditions significantly affected growth rates and maximum yield of P. hoffmannianum with the maximum values being recorded at the higher temperature and in the replete medium. Production of okadaic acid was induced under all conditions (from 13.5 to 859.8 pg cell-1), with values up to one order of magnitude higher than those observed in other DSP toxin producing species. Toxin production was enhanced under P limitation at 27 °C, corroborating the theory that toxin production is modulated by cell physiological conditions, which are in turn affected by a wide spectrum of factors, including environmental stressors such as nutrient availability. Toxin fraction released in the growth medium was negligible. No okadaic acid esters were detected in this strain of P. hoffmannianum.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Nutrientes , Temperatura , Dinoflagellida/fisiologia , Dinoflagellida/ultraestrutura , Florida , Nitrogênio/metabolismo , Ácido Okadáico/metabolismo , Fósforo/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA