Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(9): 332, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023801

RESUMO

In this work, the effect of microwave-assisted acid treatments on the morphological and crystallochemical characteristics of chrysotile fibers is investigated. A low concentration of nitric acid (0.2 N) is used to remove Mg2+-species located in the octahedral sheet of its structure, thereby causing a crystallo-chemical change forming a skeleton of non-crystalline amorphous silica. This skeleton maintains an elongated morphology but characterized by rounded -not sharp-edges and porous surfaces whose physical resistance under stress is reduced when compared with the initial fibers of chrysotile, favoring a lower pathogenicity of the fibers. Thus, microwave-assisted acid treatment rise as a low-cost, fast and effective option in avoiding the dangerousness associated with asbestos waste management.


Assuntos
Asbestos Serpentinas , Micro-Ondas , Ácido Nítrico , Asbestos Serpentinas/química , Ácido Nítrico/química , Gerenciamento de Resíduos/métodos , Difração de Raios X , Microscopia Eletrônica de Varredura
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000193

RESUMO

The aim of this special issue is to show the advances in the different applications that inorganic materials based on silica have had in recent years [...].


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Catálise , Porosidade , Adsorção
3.
Energy Fuels ; 38(11): 9849-9861, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863684

RESUMO

The valorization of biomass and its transformation into fuels are highly interesting due to the abundance of biomass and its almost neutral carbon emissions. In this article, we show the production of γ-valerolactone (GVL), a valuable product, from furfural (FF), a compound that can be easily obtained from biomass. This FF to GVL transformation involves a catalytic cascade reaction with two hydrogenation steps. Pt and/or Zr supported on sepiolite catalysts have been prepared and tested in the FF transformation reaction. A physical mixture of a Zr-based and a Pt-based catalyst has reached a yield to GVL of ca. 50% after 16 h at 180 °C. This performance largely exceeds that obtained by each of the single Pt or single Zr metal catalysts independently, showing a strong synergistic effect. These data suggest that each metal (Pt and Zr) plays an important and complementary role in different reaction steps. Furthermore, the physical mixture appears to be much more efficient than bimetallic Pt/Zr catalysts synthesized with the same amount of metals. The role of the type of acidity and the oxidation state of the surface platinum species on the catalytic performance has been discussed. Moreover, this reaction has been carried out in batch and continuous flow reactors, and a comparative study between the two operation modes has been undertaken. A certain correlation between the catalytic results obtained by both operation modes has been found.

4.
Int J Biol Macromol ; 274(Pt 2): 133359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914393

RESUMO

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.


Assuntos
Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas , Lipase , Dióxido de Silício , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/química , Lipase/metabolismo , Dióxido de Silício/química , Porosidade , Temperatura , Adsorção , Concentração de Íons de Hidrogênio , Eurotiales/enzimologia , Cinética , Glutaral/química
5.
Environ Sci Pollut Res Int ; 31(25): 37298-37315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769263

RESUMO

Five phyllosilicates (kaolinite, montmorillonite, saponite, sepiolite and palygorskite) have been selected as starting materials for the synthesis of zeolites. Among them, kaolinite and montmorillonite display the lowest Si/Al molar ratio leading to aluminosilicates with high crystallinity. Thus, the hydrothermal treatment under basic conditions forms 4A zeolite when kaolinite is used as starting material while 13X zeolite is obtained when montmorillonite is used as starting material. The microporosity and CO2-adsorption capacity of the prepared zeolites are directly related to its crystallinity. Thus, in order to improve it, raw phyllosilicates were subjected to a microwave-assisted treatment to remove undesired Mg or Fe-species, which have a negative effect in the assembling of the zeolites by hydrothermal basic conditions in a second step. The highest adsorption value was 3.85 mmol/g at 25 °C and 760 mm of Hg for Mont-A-B sample after the consecutive treatments.


Assuntos
Dióxido de Carbono , Zeolitas , Zeolitas/química , Adsorção , Dióxido de Carbono/química , Silicatos/química , Bentonita/química
6.
Ind Eng Chem Res ; 63(16): 7073-7087, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38681868

RESUMO

The separation of CO2 from N2 remains a highly challenging task in postcombustion CO2 capture processes, primarily due to the relatively low CO2 content (3-15%) compared to that of N2 (70%). This challenge is particularly prominent for carbon-based adsorbents that exhibit relatively low selectivity. In this study, we present a successfully implemented strategy to enhance the selectivity of composite aerogels made of reduced graphene oxide (rGO) and functionalized polymer particles. Considering that the CO2/N2 selectivity of the aerogels is affected on the one hand by the surface chemistry (offering more sites for CO2 capture) and fine-tuned microporosity (offering molecular sieve effect), both of these parameters were affected in situ during the synthesis process. The resulting aerogels exhibit improved CO2 adsorption capacity and a significant reduction in N2 adsorption at a temperature of 25 °C and 1 atm, leading to a more than 10-fold increase in selectivity compared to the reference material. This achievement represents the highest selectivity reported thus far for carbon-based adsorbents. Detailed characterization of the aerogel surfaces has revealed an increase in the quantity of surface oxygen functional groups, as well as an augmentation in the fractions of micropores (<2 nm) and small mesopores (<5 nm) as a result of the modified synthesis methodology. Additionally, it was found that the surface morphology of the aerogels has undergone important changes. The reference materials feature a surface rich in curved wrinkles with an approximate diameter of 100 nm, resulting in a selectivity range of 50-100. In contrast, the novel aerogels exhibit a higher degree of oxidation, rendering them stiffer and less elastic, resembling crumpled paper morphology. This transformation, along with the improved functionalization and augmented microporosity in the altered aerogels, has rendered the aerogels almost completely N2-phobic, with selectivity values ranging from 470 to 621. This finding provides experimental evidence for the theoretically predicted relationship between the elasticity of graphene-based adsorbents and their CO2/N2 selectivity performance. It introduces a new perspective on the issue of N2-phobicity. The outstanding performance achieved, including a CO2 adsorption capacity of nearly 2 mmol/g and the highest selectivity of 620, positions these composites as highly promising materials in the field of carbon capture and sequestration (CCS) postcombustion technology.

7.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473867

RESUMO

Nb-based catalysts supported on porous silica with different textural properties have been synthesized, characterized, and tested in the one-pot reaction of furfural to obtain valuable chemicals. The catalytic results reveal that the presence of fluoride in the synthesis, which limits the growing of the porous silica, limits diffusional problems of the porous silica, obtaining higher conversion values at shorter reaction times. On the other hand, the incorporation of NbOx species in the porous silica provides Lewis acid sites and a small proportion of Brönsted acid sites, in such a way that the main products are alkyl furfuryl ethers, which can be used as fuel additives.


Assuntos
Furaldeído , Nióbio , Furaldeído/química , Hidrogenação , Dióxido de Silício/química , Catálise
8.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501631

RESUMO

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO2-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous. Moreover, this biochar is more resistant to the pyrolytic treatment in comparison to the biochars obtained from the commercial chitosan and chitosan in the form of film. CO2-adsorption studies at different temperatures have also shown that the adsorption capacity diminishes as the adsorption temperature increases, thus suggesting that the adsorption takes place by a physical process.

9.
ACS Appl Polym Mater ; 4(12): 9065-9075, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36532886

RESUMO

The main constraint on developing a full potential for CO2 adsorption of 3D composite monoliths made of reduced graphene oxide (rGO) and polymer materials is the lack of control of their textural properties, along with the diffusional limitation to the CO2 adsorption due to the pronounced polymers' microporosity. In this work, the textural properties of the composites were altered by employing highly crosslinked polymer particles, synthesized by emulsion polymerization in aqueous media. For that aim, waterborne methyl methacrylate (MMA) particles were prepared, in which the crosslinking was induced by using different quantities of divinyl benzene (DVB). Afterward, these particles were combined with rGO platelets and subjected to the reduction-induced self-assembly process. The resulting 3D monolithic porous materials certainly presented improved textural properties, in which the porosity and BET surface area were increased up to 100% with respect to noncrosslinked composites. The crosslinked density of MMA polymer particles was a key parameter controlling the porous properties of the composites. Consequently, higher CO2 uptake than that of neat GO structures and composites made of noncrosslinked MMA polymer particles was attained. This work demonstrates that a proper control of the microstructure of the polymer particles and their facile introduction within rGO self-assembly 3D structures is a powerful tool to tailor the textural properties of the composites toward improved CO2 capture performance.

10.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555279

RESUMO

Since the beginning of civilization, porous materials have been used for medical purposes [...].


Assuntos
Materiais Biocompatíveis , Porosidade
11.
Sci Rep ; 12(1): 19814, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396702

RESUMO

To explore a novel kind of green composite material having excellent antibacterial, antifungal ability and specific-targeting capability for pharmaceutical uses, a novel kind of bio-composite was prepared using sodium purified clay as carrier of Caraway essential oil (CEO). Gas chromatography-mass spectroscopy (GC-MS) analyses of CEO reveals that Carvone (68.30%) and Limonene (22.54%) are the two major components with a minimum inhibitory concentration (MIC) value equal to 125 mg/mL against Staphylococcus (S) aureus bacteria and Candida albicans fungi. Clay from Zaghouan was purified and characterized by X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption-desorption (BET method). Results obtained by chromatograph equipped with a flame ionization detector (GC-FID) show that the concentration of 130 mg/mL of essential oil and 5 h of contact with the purified clay are the optimal conditions for the bio-hybrid formation. The pseudo-second-order model can describe the kinetic study of the adsorption of Carvone and Limonene on sodium montmorillonite, and the adsorption isotherms have been established to the Langmuir type. Limonene registers a maximum adsorption value equal to 3.05 mg/g of clay however Carvone register the higher amount of adsorption (19.98 mg/g) according to its polarity and the abundance of this compound in the crude CEO. X-ray diffraction, Fourier transformed infrared spectroscopy, elemental analyses (CHN) and X-ray fluorescence characterization valid the success adsorption of CEO in sodium montmorillonite surface. The purified clay/CEO hybrid (purified clay/CEO) combined the advantages of both the clay and the essential oil used in exerting the antibacterial and antifungal activity, and thus, the composite has a double antibacterial and antifungal activity compared to the separately uses of inactive clay and CEO, suggesting the great potential application in pharmaceutical treatments.


Assuntos
Carum , Óleos Voláteis , Argila/química , Bentonita/química , Adsorção , Limoneno , Óleos Voláteis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos , Antibacterianos , Preparações Farmacêuticas , Sódio
12.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808449

RESUMO

The effect of polyvinyl alcohol (PVA) stabilizers and gold nanoparticles supported on active carbon (AuNPs/AC) was investigated in this article. Polymers with different molecular weights and hydrolysis degrees have been synthesized and used, like the stabilizing agent of Au nano-catalysts obtained by the sol-immobilization method. The reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/AC catalysts. In addition, we report several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) in order to correlate the properties of the polymer with the metal nanoparticle size and the catalytic activity. A volcano plot was observed linking the catalytic performance with hydrolysis degree and the maximum of the curve was identified at a value of 60%. The Au:PVA-60 weight ratio was changed in order to explain how the amount of the polymer can influence catalytic properties. The effect of nitroaromatic ring substituents on the catalytic mechanism was examined by the Hammett theory. Moreover, the reusability of the catalyst was investigated, with little to no decrease in activity observed over five catalytic cycles. Morphological and kinetic studies reported in this paper reveal the effect of the PVA polymeric stabilizer properties on the size and catalytic activity of supported gold nanoparticles.

13.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477753

RESUMO

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO2 emissions [...].


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/análise , Combustíveis Fósseis , Indústrias
14.
Front Chem ; 8: 591766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313041

RESUMO

A wide variety of solid sorbents has recently been synthesized for application in CO2 adsorption. Among them, mesoporous silicas deserve attention because of their ability to accommodate large concentrations of different chemicals as a consequence of their surface chemistry and tunable pore structure. Functionalized materials exhibit promising features for CO2 adsorption at high temperatures and low CO2 concentrations. This work aimed to assess the influence of the textural properties on the performance of CO2 adsorption on functionalized mesoporous silica. With this goal, several mesoporous silica foams were synthesized by varying the aging temperature, obtaining materials with larger pore diameter. Thus, the synthesized materials were functionalized by grafting or impregnation with 3-aminopropyltriethoxysilane, polyethylenimine, and tetraethylenepentamine as amine sources. Finally, the amino functionalized materials were assessed for CO2 capture by means of equilibrium adsorption isotherms at 25, 45, and 65°C. Among the most outstanding results, high aging temperatures favor the performance of impregnated materials by exposing greater pore diameters. Low or intermediate temperatures favor grafting by preserving an appropriate density of silanol groups.

15.
Molecules ; 25(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882899

RESUMO

Although chitin is of the most available biopolymers on Earth its uses and applications are limited due to its low solubility. The deacetylation of chitin leads to chitosan. This biopolymer, composed of randomly distributed ß-(1-4)-linked D-units, has better physicochemical properties due to the facts that it is possible to dissolve this biopolymer under acidic conditions, it can adopt several conformations or structures and it can be functionalized with a wide range of functional groups to modulate its superficial composition to a specific application. Chitosan is considered a highly biocompatible biopolymer due to its biodegradability, bioadhesivity and bioactivity in such a way this biopolymer displays a wide range of applications. Thus, chitosan is a promising biopolymer for numerous applications in the biomedical field (skin, bone, tissue engineering, artificial kidneys, nerves, livers, wound healing). This biopolymer is also employed to trap both organic compounds and dyes or for the selective separation of binary mixtures. In addition, chitosan can also be used as catalyst or can be used as starting molecule to obtain high added value products. Considering these premises, this review is focused on the structure and modification of chitosan as well as its uses and applications.


Assuntos
Quitosana/química , Acetilação , Animais , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis/química , Engenharia Tecidual
16.
Dalton Trans ; 49(13): 3946-3955, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31958109

RESUMO

In the present study a series of Au-transition metal oxides supported on a clay mineral such as sepiolite were tested in the preferential oxidation of CO in an excess of H2 under simulated solar light irradiation and in the absence of light, at 30 °C and atmospheric pressure. Transition metal oxides (ZnO, Fe2O3, NiO, MnO2, and Co3O4) were dispersed over the sepiolite surface where, subsequently, Au nanoparticles with an average particle size between 2 and 3 nm were successfully deposited-precipitated. The obtained photocatalysts were characterized by XRD, XRF, DRUV-Vis, N2 adsorption-desorption and HRTEM in order to evaluate the optical, structural and chemical properties of the prepared samples. Despite the low amount of gold (nominal 1.0 wt%), the catalysts exhibited an outstanding behavior under light irradiation, with reaction rates between 4.5 and 5.2 mmol COox gcat-1 h-1 for the Au-NiSep, Au-CoSep and Au-ZnSep samples. These photocatalysts exhibited a high dispersion of the respective transition metal oxides over the sepiolite support and the presence of low-coordinated hemispherical gold nanoparticles. The superior photocatalytic efficiency of these samples was ascribed to the reduction of the electron-hole pair recombination of photogenerated charge carriers by the excitation of the localized surface plasmon resonance of the Au nanoparticles. The BET surface area and the gold particle size seemed to be relevant factors affecting the catalytic performance.

17.
Top Curr Chem (Cham) ; 377(5): 26, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31529210

RESUMO

Lignin, one of the main components of lignocellulosic biomass, is the largest renewable source of aromatics on the planet and presents an extraordinary opportunity for being used in the production of bio-based products. It can be transformed for the substitution of aromatic chemical-derived petrol as BTXs. The wide range of applications that it can be obtained from BTXs building blocks makes the selective depolymerization of lignin a great scientific challenge. This review emphasizes the different strategies for the fragmentation of lignin to monomers or aromatics hydrocarbons. Thus, a by-product traditionally discarded or used for energy generation, it could be valorized into high added-value products.


Assuntos
Benzeno/química , Lignina/química , Tolueno/química , Xilenos/química , Líquidos Iônicos/química , Estrutura Molecular , Polimerização
18.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31261983

RESUMO

Mesoporous silica are inorganic materials, which are formed by the condensation of sodium silicate or silicon alkoxides around an ordered surfactant used as template [...].


Assuntos
Dióxido de Silício/química , Proteínas Imobilizadas/química , Porosidade , Dióxido de Silício/síntese química
19.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769888

RESUMO

Zr-doped mesoporous silicas with different textural parameters have been synthesized in the presence of structure-modifying agents, and then characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption at -196 °C, NH3 thermoprogrammed desorption (NH3⁻TPD), CO2 thermoprogrammed desorption (CO2⁻TPD), and X-ray photoelectron spectroscopy (XPS). These porous materials were evaluated in the furfural hydrogenation through the Meerwein-Ponndorf-Verley (MPV) reaction. The catalytic results indicate that the catalyst synthesized under hydrothermal conditions and adding a pore expander agent is more active and selective to furfuryl alcohol. However, the Zr-doped porous silica catalysts that were synthesized at room temperature, which possess narrow pore sizes, tend to form i-propyl furfuryl and difurfuryl ethers, coming from etherification between furfuryl alcohol (FOL) and isopropanol molecules (used as H-donor) by a SN2 mechanism.


Assuntos
Furaldeído/química , Furanos/química , Dióxido de Silício/química , Adsorção , Catálise , Hidrogenação/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Porosidade , Difração de Raios X
20.
Materials (Basel) ; 11(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200204

RESUMO

Vanadium oxide (V2O5) species has been supported on different porous clay heterostructures (with silica pillars, silica-zirconia with a molar ratio Si/Zr = 5 and silica-titania with a molar ratio Si/Ti = 5) by wetness incipient method. All catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption at -196 °C, NH3 thermoprogrammed desorption (NH3-TPD), Raman spectroscopy, diffuse reflectance UV-Vis and X-ray photoelectron spectroscopy (XPS). After that, the catalytic activity of the vanadium-based catalysts was evaluated in the selective oxidation of H2S to elemental sulfur. The catalytic data show that both the activity and the catalytic stability increase with the vanadium content, obtaining the highest conversion values and sulfur yield for the catalysts with vanadium content of 16 wt.%. The comparison among all supports reveals that the incorporation of TiO2 species in the pillars of the PCH improves the resistance to the deactivation, attaining as best results a H2S conversion of 89% for SiTi-PCH-16V catalyst and elemental sulfur is the only compound detected by gas chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA